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This document provides a detailed security analysis of the attribute based
credential system HABS, in Section 1 and proofs of the homomorphism and
correctness to support multiple issuers in Section 2.

1 Security of the Main Scheme

In this section, we prove that our attribute based credential system HABS
provides the security requirements defined in Section 4.2.

1.1 Correctness

The proof of Theorem 1 relies on the correctness of the following three Equa-
tions:

ê(C1, g2)
?
= Xis · ê(XH(S)−1

u , g2) · ê(h1, C3) (1)

ê(σ1, g2)
?
= Xisê(AR, A)ê(C ′2, h2)

l∏
i=1

ê(uρ(i)h1
τi , ωi)ê(σ2, g2

m) (2)

ê($∗, g2) ·Xis
−1 ?

= ê(Xu
−H(S), g2) (3)

where $∗ is such that $∗ = C ′1C
′
2
skins .

First, the correctness of Equation 1 guarantees the correctness of the ob-
tained credential. It is easy to check using the bilinearity property of pairing
functions as follows:

ê(C1, g2) = ê(xis · [Xu
H(S)−1

] · h1r, g2)

= ê(g1
sis , g2) · ê(Xu

H(S)−1

, g2) · ê(h1r, g2)

= ê(g1, g2)sis · ê(Xu
H(S)−1

, g2) · ê(h1, g2r)

= Xis · ê(Xu
H(S)−1

, g2) · ê(h1, C3)

Second, for the correctness of the presentation token, the verifier checks if the
received token Σ = (Ω, σ1, σ2, C

′
1, C

′
2, A,SR) is a valid signature of the message

m, based on the predicate Υ (corresponding to (Ml×k, ρ)). As such, the verifier
first checks the set of revealed attributes SR. Note that the verification process
has to be stopped if the verification of SR was rejected. Otherwise, the verifier
computes an accumulator AR of the revealed attributes’ values, using σ2, such
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as AR = σ2
H(SR)−1

, where H(SR) =
∏
ai∈SR H(ai)

−1.
To prove the correctness of Equation 2, we first express σ1 as follows:

σ1 = C ′1 ·B · g1rmm

= C ′1 ·
l∏
i=1

(u′ρ(i))
vi · g1rmm

= xis ·Xu
−H(S) · h1r+r

′
·
l∏
i=1

(uρ(i))
(r+r′)vi · g1rmm

Now, we provide the proof of correctness of the presentation token verification.
In the following proof, we denote (r+ r′) by R, and the first side of Equation 2
by s.

s = ê(xis ·XuH(S)−1

· h1
r+r′ ·

l∏
i=1

(uρ(i))
Rvi · g1rmm, g2)

= ê(xis, g2) · ê(XuH(S)−1

, g2) · ê(h1
R, g2) · ê(g1rmm, g2) · ê(

l∏
i=1

uρ(i)
Rvi , g2)

= ê(g1, g2)
sis · ê(XuH(SR∪SH )−1

, g2) · ê(h1
R, g2) · ê(σ2, g2

m) ·
l∏
i=1

ê(uρ(i)
Rvi , g2)

= Xis · ê([g1sku ]H(SR)−1H(SH )−1

, g2) · ê(g1−R, h2) · ê(σ2, g2
m) ·

l∏
i=1·Xis

−1

ê(uρ(i), g2
Rvi)

= Xis · ê(g1H(SR)−1

, [g2
sku ]H(SH )−1

) · ê(C′2, h2) · ê(σ2, g2
m) ·

l∏
i=1

ê(uρ(i), ωi)

= Xis · ê(AR, A) · ê(C′2, h2) ·
l∏
i=1

·ê(uρ(i)h1
τi , ωi) · ê(σ2, g2

m)

We note that τi =
∑k
i=1 µjMi,j , the last equality is derived by Definition 8,

such as
l∑
i=1

τi(viR) = R

l∑
i=1

τivi = R · 1 = R

As such, the term ê(h1
R, g2) can be represented as ê(h1

R, g2) =
∏l
i=1 ê(h1

Rτi , g2
Rvi).

Finally, for the correctness of our judge algorithm, we consider the proof
of validity of the inspection procedure proving that the El-Gamal decryption
algorithm has been correctly done, using the knowledge of skins, as presented
in Equation 3. The correctness of Equation 3 is as follows:

ê($, g2) ·Xis
−1 = ê(C ′1C

′
2
skins , g2) ·Xis

−1

= ê([xis ·Xu
H(S)−1

· h1R] · g1−R
skins

, g2) ·Xis
−1

= ê(xis, g2) · ê(Xu
H(S)−1

· g1αR · g1−R
α
, g2) ·Xis

−1

= ê(Xu
H(S)−1

, g2)
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1.2 Unforgeability

Sketch of proof. We prove that our credential system HABS satisfies the un-
forgeability requirement using an absurdum reasoning. We suppose that an
attacker A can violate the statements of the Theorem 2 by reaching the advan-
tage Pr[ExpA

unforg(1ξ) = 1] ≥ ε(ξ).
Let us first start by the MC-game. Given the public-private key of the user

(pku, sku), A tries to forge a credential C, while relying on several sessions.
Obviously, A tries a forgery attack against the CDH assumption, considering
that the credential element C1 is a product of an accumulator over the set of user
attributes, the secret key of the issuer xis and a randomization of the public key
of the inspector h1. Knowing that this randomization is required for deriving the
remaining credential elements, A is led to break the CDH assumption. The MC-
game is then considered with respect to the CDH-assumption. Recall that the
complexity of the CDH assumption has been studied in [3] and it is demonstrated
to be hard to solve; i.e. a (t, ε) CDH group is a group for which the Adv(A, t) ≤
ε for every PPT adversary running in a time t.
Now, we suppose that the adversary A can violate the CDH assumption by
reaching an advantage Adv(A, t) ≥ ε and show the existence of an attacker B
that can reach an advantage Adv(B, t′) ≥ ε′.
Intuitively, B relies on the capabilities of A to forge credentials C obtained from
interactions with C in the MC-Game.
Since A and B algorithms are based on coin tosses, the first condition for B to
succeed is that it does not abort the MC-game before A. In [1], this probability
has been shown to be 1

e if the probability for the coin flipping to be 0 is 1
ξc+1 ,

where ξc is the number of credential queries. The other condition of the attacker
is to be able to identify the value of r or to extract the private key xis of the
issuer, for which the credential has been forged by the A. After a time t′, this
probability is equal to 1

ξc+1 . This shows that the attacker B can violate the
CDH-assumption with a probability equal to ε

e(ξc+1) which conflicts the fact

that G1 is a (t, ε)-CDH group.
Another desirable property of our HABS construction is the presentation

token unforgeability, which is based on MU-Game and Col-Game. The proof
directly goes from the unforgeability property of the ABS scheme and the se-
curity of the commitment algorithm, required for proving the possession of all
non-revealed attributes SH with respect to the presented credential C.
We thus prove that our construction is unforgeable under the selective pred-
icate attack (i,e; MU-Game, Col-Game), assuming that the q-DHE holds in
G1. On one side, for the MU-Game, A relies on several Show-Query sessions to
conduct to forgery attack against the unforgeability property of the ABS signa-
ture, referred to as presentation token. Note that our construction inherits the
unforgeability property from Waters’ CP-ABE scheme [5], which is proven se-
cure under the assumption of the decisional q-Bilinear Diffie Hellman Exponent
(q-BDHE) problem, formalized by Boneh et al. in [2]. Thus, based on [5, 4],
the advantage of an algorithm B, against the q-DHE assumption, is equal to
Adv(B, t) = O( 1

ξs+1 ), where ξs is the number of showing queries the adversary
A can make. Similarly, B can violate the q-DHE problem with a probability
ε′ ≥ ε · O( 1

ξs+1 ), which contradicts the q-DHE security assumption.
Consequently, we can prove the resistance of HABS against a collusion attack
between two malicious users, considering the Col-Game. That is, this property
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is ensured as it is considered as sub-case of the unforgeability requirement of an
ABS scheme.
On the other side, the security of our commitment scheme, considered in Show
algorithm for proving the possession of all attributes certified by the issuer,
stems from the hardness of the DLP assumption. That is, it can be consid-
ered as the Pederson commitment scheme, which is unconditionally hiding and
has been proven secure under the DLP assumption. Additionally, we have to
note that HABS is resistant against replay attacks, thanks to the randomness
appended by the challenger, for each request.

As such, our HABS construction satisfies the unforgeability requirement,
under the q-DHE, CDH and DLP assumptions, with respect to MC-Game,
MU-Game and Col-Game.

1.3 Privacy

Sketch of proof. Theorem 3 relies on three security games, namely PP-Game,
MS-Game and IS-Game. That is, the attacker A tries to distinguish between
two honestly derived presentation tokens for different settings with respect to
every security game. As such, for the PP-Game, since a new presentation token
for the same message m and the same access predicate Υ is computed from
randoms, generated by C, both presentation tokens are identically distributed
in both cases. Thus, we can easily show that an ABS signature (presentation
token) created by using S1 can be also generated using S2. As such, it follows
the probability of predicting b is 1

2 .
Similarly, the MS-Game relies also on a left-or-right oracle, where an attacker
A cannot distinguish the oracle’s outputs better than a flipping coin. In fact,
both presentation tokens for the same message m and the same access predicate
Υ sent to different users, such as Υ(Su1) = Υ(Su2) = 1, are statistically indis-
tiguishable. As such, it follows the probability of predicting b is 1

2 .
Then, an attacker A, against the issue-show property, has an access to the Issue
oracle for generating users’ credentials. The IS-Game assumes that the attacker
also knows the public keys of the requesting user. But, since an honest user pro-
duces a different presentation token for each presentation session HABS.Show,
thanks to the randomness introduced by the user while generating the ABS
signature. As such, the A cannot distinguish two different presentations tokens
with a probability such Adv(A, t) 6= 1

2 + ε.
Therefore, our scheme is unlinkable, satisfying as well the privacy property. The
reason is that the different entities, namely, issuers, users and verifiers, have to
generate randomness for each procedure of the HABS construction.

1.4 Anonymity Removal

Sketch of proof. Let A be a successful attacker against the inspection property,
with respect to the IA-Game.
First, if the inspector is able to conclude, then a valid presentation token has
been produced during the attack on a new u∗, which contradicts the unforge-
ability property of our HABS construction. More precisely, we have to extract
the underlying user u∗, and then as we know the private key sku∗ , we extract a
valid presentation token Σ on u∗ and win the unforgeability game.
Second, we prove the resistance of our construction against such an attacker,
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based on the security of El-Gamal encryption scheme which is proven to be
computational-hiding. As such, the probability of success for A is negligible,
such as Adv(A, t) ≤ ε. Thus, our scheme satisfies the inspection feature.

2 Homomorphism to Support multiple Issuers

This section provides the proof of homomorphism and correctness of the exten-
sion of HABS to support multiple issuers.

Theorem 5 defines the aggregation algorithm agg. The proof of correctness
and homomorphism of Theorem 5 comes directly from the following Lemma
2.1 which expresses H(Si ∪ Sj) based on H(Si) and H(Sj) in order to write

C{1,Si∪Sj} with respect to C1
(i) and C1

(j).

Lemma 2.1 Given the hash function H and for every sets of attributes Si and
Sj, there exist two integers a and b, such that H(Si ∪ Sj)−1 = aH(Si)

−1 +
bH(Sj)

−1.

Proof 2.2 Referring to the Bezout’s lemma, the gcd satisfies the following prop-
erty:

gcd(H(Si),H(Sj)) = bH(Si) + aH(Sj) (4)

where a and b are two non zero integers (a and b are called Bezout coefficients).
In addition, the gcd and lcm satisfy Equation 5 such that

gcd(H(Si),H(Sj)) ∗ lcm(H(Si),H(Sj)) = H(Si)H(Sj) (5)

As such, using Equation 5, we have:

lcm(H(Si),H(Sj))
−1

=
gcd(H(Si),H(Sj))

H(Si)H(Sj)
=
bH(Si) + aH(Sj)

H(Si)H(Sj)
= bH(Sj)

−1+aH(Si)
−1

(6)
On the other side, we write H(Si ∪ Sj) as follows:

H(Si∪Sj) =
∏

ak∈Si∪Sj

H(ak) = lcm(
∏
ak∈Si

H(ak),
∏
ak∈Sj

H(ak)) = lcm(H(Si),H(Sj))

(7)

2.1 Proof of Homomorphism

In order to prove the homomorphism property with respect to the union oper-

ator, we first express [C1
(i)]a · [C1

(j)]b, denoted by RS, as a function of Si ∪ Sj ,
skisi and skisj , as follows:

RS = [xisi · [Xu
H(Si)−1

] · h1
ri ]a · [xisj · [XuH(Sj)−1

] · h1
rj ]b

= g1
a.sisi+b.sisj · [XuaH(Si)−1+bH(Sj)−1

] · h1
a.ri+b.rj

= g1
a.sisi+b.sisj · [XuH(Si∪Sj)−1

] · h1
a.ri+b.rj

Similarly, we can write the elements of the resulting credential CR, such
that CR = (C1,Si∪Sj , C2,Si∪Sj , C3,Si∪Sj , {Cl,4,Si∪Sj}l∈[1,N ]), where C1,Si∪Sj =

[C1
(i)]a · [C1

(j)]b = xisi
a · xisj b · [Xu

H(Si∪Sj)] · h1a.ri+b.rj , C2,Si∪Sj = [C2
(i)]a ·
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[C2
(j)]b = g1

−(a.ri+b.rj) C3,Si∪Sj = [C3
(i)]a·[C3

(j)]b = g2
a.ri+b.rj and {Cl,4,Si∪Sj}l∈[1,N ] =

{ula.ri+b.rj , (i.e; N is the maximum number of attributes).

The form of the aggregated credential C1,Si∪Sj , C2,Si∪Sj , C3,Si∪Sj , {Cl,4,Si∪Sj}l∈[1,N ]

is similar to the individual credentials like Ci, thus leading to the aggregated
presentation token ΣR by applying exactly the same HABSShow algorithm.
The obtained ΣR is as follows: ΣR = (ΩR, σ1,R, σ2,R, C

′
1,R, C

′
2,R, A,SR).

2.2 Proof of Correctness

We show how the verifier can rely on the aggregated presentation token ΣR, to
authenticate the user (u), with respect to his access policy Υ, such as Υ(Si ∪
Sj) = 1, where Sk presents the set of attributes certified by the issuer ISk,
k ∈ {i, j}. Using the properties of the pairing function ê, we can easily prove
the correctness of Equation 8:

ê(σ1,R, g2)
?
= Xisi

aXisj
bê(AR, A)ê(C

′
2,R, h2)

l∏
i=1

ê(uρ(i)h1
τi , ωi)ê(σ2,R, g2

m) (8)

where a and b are two integers as defined in Lemma 2.1.
By equivalence to Equation 2, we can consider that D = a.ri+ b.rj +r′ presents
the quantity R = r + r′.

ê(σ1,R, g2) = ê(xisi
axisj

b ·XuH(Si∪Sj) · h1
D ·

l∏
i=1

(uρ(i))
Dvi · g1rmm, g2)

= ê(xisi , g2)
a · ê(xisj , g2)

b · ê(XuH(Si∪Sj), g2) · ê(h1
D, g2) · ê(g1rmm, g2) · ê(

l∏
i=1

uρ(i)
Dvi , g2)

= ê(g1, g2)
a.sisi · ê(g1, g2)b.sisj · ê(XuH(SR∪SH )−1

, g2) · ê(h1
D, g2) · ê(σ2, g2

m) ·
l∏
i=1

ê(uρ(i)
Dvi , g2)

= Xisi
a ·Xisj

b · ê(g1H(SR)−1

, [g2
sku ]H(SH )−1

) · ê(C′2,R, h2) · ê(σ2, g2
m) ·

l∏
i=1

ê(uρ(i), ωi)

= Xisi
aXisj

bê(AR, A)ê(C
′
2,R, h2)

l∏
i=1

ê(uρ(i)h1
τi , ωi)ê(σ2,R, g2

m)

This proves the correctness of our HABS.Verify, while considering a multi-
issuers setting according to the agg algorithm.
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