
Wireless Personal Communications manuscript No.
(will be inserted by the editor)

A Practical Implementation Attack on Weak Pseudorandom
Number Generator Designs for EPC Gen2 Tags

Joan Melià-Seguı́ · Joaquin Garcia-Alfaro ·
Jordi Herrera-Joancomartı́

Received: 27-02-2010 / Accepted: 13-09-2010

Abstract The Electronic Product Code Generation 2 (EPC Gen2) is an international
standard that proposes the use of Radio Frequency Identification (RFID) in the supply
chain. It is designed to balance cost and functionality. As a consequence, security on
board of EPC Gen2 tags is often minimal. It is, indeed, mainly based on the use of on
board pseudorandomness, used to obscure the communication between readers and
tags; and to acknowledge the proper execution of password-protected operations. In
this paper, we present a practical implementation attack on a weak pseudorandom
number generator (PRNG) designed specifically for EPC Gen2 tags. We show that it
is feasible to eavesdrop a small amount of pseudorandom values by using standard
EPC commands and using them to determine the PRNG configuration that allows to
predict the complete output sequence.

Keywords RFID · EPC Gen2 · PRNG · Security · Eavesdropping · Attack
implementation

Joan Melià-Seguı́
Universitat Oberta de Catalunya,
Rambla Poble Nou 156, 08018 Barcelona - Spain,
E-mail: melia@uoc.edu

Joaquin Garcia-Alfaro
Institut Telecom, Telecom Bretagne
02, rue de la Chatagneraie, Cesson-Sevigne 35576 - France
E-mail: joaquin.garcia-alfaro@acm.org

Jordi Herrera-Joancomartı́
Universitat Autònoma de Barcelona,
Edifici Q, Campus de Bellaterra, 08193, Bellaterra - Spain,
E-mail: jherrera@deic.uab.es

2

1 Introduction

The Electronic Product Code Generation 2 (EPC Gen2) is an international standard
that proposes the use of Radio Frequency Identification (RFID) in the supply chain.
It is designed to balance cost and functionality. The development of Gen2 tags faces,
in fact, several challenging constraints such as cost, compatibility regulations, power
consumption, and performance requirements. As a consequence, the computational
capabilities of Gen2 tags are very simple. In this sense, the Gen2 specification only
considers two basic on board security features: pseudorandom number generators
(PRNGs) and password-protected operations. The pseudorandomness offered by on
board PRNGs is, indeed, used to protect the password-protected operations [1,2].
PRNGs are also used as an anti-collision mechanism for inventorying processes [3];
and to acknowledge other Gen2 specific operations (e.g., memory writing, decom-
mission of tags, and self-destruction). PRNGs are, therefore, the crucial components
that guarantee Gen2 security.

The use of weak PRNGs that allow the predictability of the outgoing sequences
introduces important security flaws in EPC communications. For example, it allows
an attacker to bypass the security of the password-protected commands defined in the
Gen2 standard (e.g., the access and the kill commands [3]). The execution of these
commands is processed by the tag if a 32-bit value, stored in the reserved memory of
the tag, is provided by the reader. Therefore, if a compliant reader wants to request
the execution of these special commands, it must provide an appropriate copy of the
32-bit password values. The security model of the EPC Gen2 specification considers
that the reader-to-tag channel requires protection to handle an eventual eavesdrop-
ping of these values. For this reason, the reader must obscure the transmission of the
32-bit password values. To do so, the reader requests beforehand two 16-bit pseu-
dorandom sequences to the tag. These two sequences are computed by the on-board
PRNG of the tag, and sent as cleartext to the reader (notice that the EPC Gen2 speci-
fication does not require protection for the tag-to-reader channel). Once obtained the
two pseudorandom sequences, the reader transmits the 32-bit password values in two
steps: (1) it obscures the 16 lowest bits of the password by an exclusive OR (XOR)
logical operation with the first pseudorandom sequence, and transmits the resulting
first half-password; (2) it obscures the remainder 16 bits of the password by XORing
them with the second pseudorandom sequence, and transmits the resulting second
half-password. Since the attacker is not supposed to be capable of eavesdropping the
tag-to-reader channel, the only (practical) way to retrieve the password values must
come from the eavesdropping of the reader-to-tag channel. This is indeed possible if
the on-board tag’s PRNG is predictable. The attacker can apply, for instance, an active
scanning of the tags, to analyze the predictability of their pseudorandom sequences;
or a passive eavesdropping of reader-to-tag acknowledgments, with the same purpose
of analyzing the predictability of tags’ pseudorandom sequences. If either attack suc-
ceeds, it then suffices to apply a simple XOR operation with the predicted sequences
and the contents of the messages transmitted over the reader-to-tag channel to decrypt
the remainder ciphertext (e.g., the protected half-passwords).

In this paper, we analyze the proposal presented in [4], in which the authors de-
scribe the construction of a cost-effective PRNG for EPC Gen2 devices. We demon-

3

strate, by implementing a practical attack, that their approach is not secure. An at-
tacker may obtain the PRNG configuration with very few observations and then he
is able to derive the whole pseudorandom sequence. Although the attack implemen-
tation has been applied to a specific PRNG proposal, the procedure used to obtain
the data is based on standard EPC commands and it can be applied to any EPC tag
communication to eavesdrop the output of the PRNG.

The paper is organized as follows. Section 2 discusses the challenges of design-
ing PRNGs for EPC Gen2 tags, reviews some proposals and finally describes the
suitability of using linear feedback shift registers (LFSRs) for the generation of pseu-
dorandom sequences. The section also describes the proposal presented by Che et al.
in [4]. In Section 3, we present an analysis of the Che et al. scheme. We give the
details of a statistical analysis performed over the output data based on the National
Institute of Standards and Technology (NIST) statistical test for pseudorandomness.
Based on the weakness detected by the NIST test, we also detail an attack that, given
a small number of output bits, can determine the whole sequence. Section 4 provides
the details of the attack implementation. The section provides information about the
tools used to implement the attack and the empirical results obtained in the attack of
the Che et al. scheme. Finally, Section 5 concludes the paper and gives some ideas
for further research.

2 Pseudorandom number generators for EPC Gen2 tag

The design of PRNGs for EPC Gen2 tags is not an easy task due to the computational
and memory restrictions that these tiny devices imply. Capabilities of this type of
tags are so small that security features for the EPC Gen2 standard are expected to
be implemented with a small amount of equivalent logic gates (GE), defined in the
literature between 2,000 and 5,000 [5]. This is a extremely small value if we consider
that a standard hash function (the most simple cryptographic transformation), like
SHA1, needs at least 8,120 GE to be implemented [6].

2.1 Existing proposals

Existing commercial Gen2 tags do implement a PRNG, as it is an EPC standard
mandatory, but companies are often reluctant to present the design of their PRNGs.
Manufacturers simply refer to testbeds that show the accomplishment of some ex-
pected requirements, most of them for compatibility purposes. They fail to offer con-
vincing information about the PRNGs designs [7]. This is mostly security through
obscurity, which is always ineffective in security engineering, as it has been shown
with the disclosure of the PRNG used in the MIFARE Classic chip [8] that has shown
a vulnerable PRNG.

Few PRNG proposals have been presented in the scientific literature specifically
designed for EPC tags. To the best of our knowledge, only three papers explicitly
propose PRNG for EPC tags. On one hand, Peris-Lopez et al. present in [9] a de-
terministic algorithm that relies on the use of 32-bit keys and pre-established initial

4

states. The set of functions mainly consists of bit rotations, bitwise operations, and
modular algebra, building a 32-bit PRNG. The authors also propose an alternative 16-
bit version of their PRNG for EPC Gen2 compatibility. To reduce the output length
from 32 to 16 bits, Peris et al. divide the 32-bit output in two halves and XOR them
to obtain the 16-bit output sequence. No evidences of further achievements other
than hardware complexity and statistical behavior are provided. Moreover, the in-
herent peculiarity of their construction methodology obscures potential comparison
with other designs in the literature. On the other hand, Che et al. describe in [4] a
hybrid approach that combines the use of Linear Feedback Shift Registers (LFSR)
and physical properties to build random sequences (see Section 2.3 for a detailed
description of their scheme). A similar idea has been also used in [10] to design a
PRNG. In this case the authors handle the inherent linearity of LFSRs by means of
a multiple-polynomial approach. The authors present a secure PRNG design suitable
to the current EPC Gen2 technology, providing evidences of statistical and hardware
compatibility.

2.2 LFSR-based pseudorandom number generators

Linear feedback shift registers (LFSRs) are an important tool for designing PRNG
for EPC Gen2 tags. They lead to extremely efficient and simple hardware implemen-
tations. For instance, a 16-cell LFSR can be implemented with only 192 GE. A LFSR
is a digital circuit that contains a shift register and a feedback function. The shift reg-
ister is composed of n binary cells that share the same clock signal. Each time a bit
is needed, the content of the register is shifted one cell, obtaining the most significant
bit of the register in the previous state. The feedback function computes a new bit
using some bits of the register, obtaining the less significant bit to be filled in the new
state of the register. The feedback function of a LFSR is basically an exclusive OR
logical operation (XOR) of some cells content, named taps.

Although LFSRs can be implemented efficiently, their main drawback is that their
sequences are high predictable [11,12]. For example, let sk+1, sk+2, · · · , sk+2n be a
sequence of 2n consecutive bits generated from an LFSR. Let B = (bn, bn−1, · · · , b1)
be the feedback function of the LFSR. Then, the feedback function can be easily
computed by solving the following equation system:

sk+1 sk+2 · · · sk+n

sk+2 sk+3 · · · sk+n+1

...
...

. . .
...

sk+n sk+n+1 · · · sk+2n−1

bn

bn−1

...
b1

 =

sk+n+1

sk+n+2

...
sk+2n

 (1)

By solving Equation (1) we obtain the feedback polynomial coefficients. Despite
the 2n−1 period length generated by a n LFSR, the full sequence can be determined
only with 2n consecutive bits due to the linearity of the system.

This linearity must be handled before using LFSRs to build robust PRNGs. Sev-
eral basic constructions can be used to hide linearity, while maintaining suitable sta-
tistical properties and long output periods. One of these techniques are filters. Filters

5

use a non-linear feedback function as an input to the register. The filter should not
be too simple to be weak but neither too complex, otherwise it would become the
bottleneck of the generator. However recent attacks to the MIFARE PRNG [8] have
demonstrated the vulnerability of this kind of generators when the non-linear function
is not taken carefully. Another approach to break the linearity of a LFSR is to use a
non-linear combination of multiple LFSRs to generate a unique output. Generally the
output of one LFSR is used to select or combine the output of one or more LFSRs, in
the same or different clock times. Known examples of this approach are the Geffe, A5
or the Shrinking generator [13]. The output generated from this constructions is sta-
tistically weak, being vulnerable to correlation or side-channel attacks [14]. Also the
irregular output data rate from some of these constructions (e.g. the shrinking gen-
erator) is not suitable for PRNG used in security environments. Finally, generators
with memory are another alternative. Additional memory can be used to add some
non-linear information in between the clock steps of the LFSR. Besides the memory,
also binary adders and carry registers should be used to complete this approach.

The different techniques of deterministic modifications of LFSRs explained so far
are useful for keystream generators where sender and receiver can share a secret k as
a key for the PRNG one-time pad communications. However, the specific communi-
cation model of EPC Gen2 systems uses another paradigm where sender and receiver
cannot share any secret k. Instead of this, the low-power tag-to-reader communication
is used to transmit in plain text the nonces to be used as a keystream for the reader-to-
tag communication. This scenario allows other strategies for the linearity avoidance
of LFSRs.

A first straightforward strategy is to suppress the LFSR itself and use a true ran-
dom data source as a random number generator. Although this approach is theoreti-
cally sound, implementations of true random number generators obtain their random-
ness from the device energy and such energy is very scarce in an EPC Gen2 tag. As
a result, the generator throughput cannot reach the minimal requirements of the EPC
communication standard. Having this problem in mind, Che et al. propose in [4] the
combination of true random numbers (trn) extracted from physical effects on tag, and
LFSRs to increase the throughput of the generator while decreasing the predictabil-
ity of the output sequence. However, as we review later in this paper, their approach
does not achieve the objective to break the linearity of the output sequence. In [10],
authors also combine true random data and LFSRs to create a PRNG.

A part of these two proposals, there are not many references in the literature that
combine true random data and LFSR to obtain a good PRNG. The main reason, as we
already stated, is that the obtained PRNG cannot be used as an additive stream cipher
for a standard sender-receiver communication model due to the infeasibility of re-
producing the same sequence at both communication parts since the cipher sequence
will be affected by a true random source.

2.3 The Che et al. proposal

In [4], Che et al. present a new PRNG for application in RFID tags. Their system
relies on an oscillator-based Truly RNG (TRNG), and exploits the thermal noise of

6

O
ut

pu
t

TRNG

b1 b2 bn-1 bn

sn sn-1 s2 s1

Fig. 1 PRNG scheme based on the Che et al. specifications

two resistors to modulate the edge of a sampling clock and generate the true random
bits (trn). Authors state the final system prevents potential attackers to perform any
effective prediction about the generated sequence (even if the design is known) thanks
to the white noise based cryptographic key generation.

After describing its TRNG oscillator-based core, the authors focus on design con-
siderations specially regarding power consumption and output data rates trade-offs.
Knowing the fact that the higher the frequency oscillation of the system, the higher
the current (thus also power) consumption, the authors look for system level opti-
mization in order to reduce the power consumption due to the low-power restrictions
of RFIDs.

The optimization proposed by Che et al. relies on the combination of the TRNG
and a LFSR (cf. Figure 1). Adding a LFSR to the TRNG lets the system reduce the
clock frequency proportionally to the number of cells of the LFSR. Specifically, ex-
ploiting the initial state of a 16-bit LFSR combined with the addition of the generated
truly random number (trn) for each cycle ring, allows the system to decrease the clock
frequency with a 1

16 factor.
Authors claim that [4]: “If we add 1-bit truly random number in the cycle ring as

a random number seed, the output sequence of the LFSR will also be unpredictable
and irreproducible as a TRNG.”. We show in the next section that this claim does not
hold.

3 Analyzing and exploiting the Che et al. proposal

In this section, we present an analysis of the PRNG proposal presented by Che et
al. described above. We give the details of a statistical analysis, performed over the
output data, based on the NIST statistical test for pseudorandomness. Based on these
results, we detail an attack that, given a small number of output bits, can determine
the whole sequence.

3.1 Che et al. statistical analysis

Since the main property of a PRNG is to ensure the forward unpredictability of its
generated sequence, the correctness of a PRNG can be measured with statistical tests
applied to the output sequence.

7

Table 1 Che et al. results for the NIST statistical test suite

Sequence T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Frequency 0.99 0.98 0.96 1.00 1.00 0.97 0.97 0.99 0.96 0.97
BlockFrequency 1.00 1.00 0.97 0.98 1.00 0.98 1.00 0.99 0.98 0.99
Runs 0.98 1.00 1.00 0.99 0.99 0.99 0.96 0.98 0.98 1.00
LongestRun 0.96 0.96 0.98 0.97 0.94 0.96 0.95 0.98 0.99 0.94
Binary Matrix Rank 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OverlappingTemplate 0.96 0.94 0.99 0.98 0.98 0.93 0.97 0.98 0.98 0.95
Universal 1.00 0.99 0.98 0.99 1.00 0.97 0.99 0.99 0.99 0.98
ApproximateEntropy 0.99 0.97 1.00 0.99 0.98 0.98 0.99 1.00 1.00 1.00
LinearComplexity 0.99 1.00 0.99 0.99 0.95 1.00 1.00 0.99 0.99 1.00

CumulativeSums 2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

NonPeriodicTemplate 148
148

148
148

148
148

148
148

148
148

148
148

148
148

148
148

147
148

? 148
148

RandomExcursions 7
8

? 7
8

? 8
8

7
8

? 8
8

7
8

? 8
8

6
8

? 8
8

8
8

RandomExcursionsVariant 18
18

18
18

18
18

18
18

18
18

18
18

18
18

18
18

18
18

18
18

Serial 2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

We take the National Institute of Standards and Technology (NIST) suit test for
checking the randomness deviations of a binary random sequence [15]. NIST test-
ing algorithms use a hypothesis test considering the randomness of the sequence as
the null hypothesis H0, and the non-randomness as the alternative hypothesis, Ha.
Tests are performed regarding a level of significance or critical value, denoted as α
hereinafter.

NIST tests produce P-values summarizing the strength of the hypothesis. If P-
values ≥ α, H0 is accepted. It is not necessary that strictly all P-values hold this
bound for the sequence to be considered as a good pseudorandom sequence. In fact,
the NIST recommends that the proportion of test over the significance level, must fit
in the interval

p̂± 3

√
p̂(1− p̂)

m
(2)

where p̂ = 1−α, and m is the sample size. A common value used in cryptography
[15] to statistically confirm the randomness of the analyzed data would be α = 0.01,
that means one would expect 1 in 100 sequences to be rejected. P-values passing
α give a confidence of 99.9% of the randomness of the evaluated sequence (if 100
sequences are evaluated, results should pass 0.9615 as defined in Equation 2).

In order to evaluate the randomness quality of the sequence produced by the Che
et al. scheme, we have generated 230 MB of output data from an implementation of
their proposed PRNG. Such data has been divided in ten different data sequences (Ti)
that have been independently analyzed using the NIST suit tests.

NIST test results for the Che et al. random generated data are presented in Table 1.
Each column represents 23 MB of pseudorandom data generated with different seed
and true random source. Each row refers to a test included in NIST test suite. The first
nine tests are represented with the numerical value of the uniformity of P-values. The
last five tests are in fact a set of different tests thus in order to represent each of the

8

values, an achievement ratio is represented following the same decision rule of the
first tests (Equation 2). Tests refusing randomness hypothesis are denoted with bold
letters in the table. For tests consisting on a set of tests, an asterisk is added when
some of the tests are not successfully achieved.

Results show a statistical evidence of non randomness for the Binary Matrix Rank
Test (cf. Table 1). Such test constructs binary matrices from the analyzed data and
checks for linear dependence among the rows or columns of the constructed matrices.
The fact that the Binary Matrix Rank Test fails for all the sequences, gives a clear
evidence of a non-randomness due to linearity problems.

3.2 Exploiting the linearity weaknesses of the scheme

As we have pointed out in Section 2.2, the main vulnerability of a PRNG based on
a linear feedback shift register comes from its easy predictability due to its linearity
properties.

Results presented in Section 3.1 show that the Binary Matrix Rank Test from the
NIST statistical test suite fails for the Che et al scheme, providing information that
the scheme does not succeed in breaking the linearity of the underlying LFSR. In
fact, a specific attack to break the Che et al. PRNG based on the inherent linearity of
the LFSR has been presented in [10] and is next briefly described.

Notice that in the Che et al. scheme the pseudorandom sequence is produced by
a LFSR XORed in its first cell with a truly random bit (cf. Figure 1). That means
we can find a 2n pseudorandom output sequence of the proposed scheme identically
equal to the one of the n−bit LFSR (without of the XORed true bit) in case that 2
consecutive random bits are 0. Such event will occur with probability 1/4 assuming
bits are true random.

3.2.1 Attack description

Our scenario is composed by a Che et al. system that produces pseudorandom bits.
Only a part of the pseudorandom output sequence, denoted by sa is known to the
attacker, besides the size n of the LFSR. On the other hand, the seed (initial state)
and the feedback polynomial coefficients remain secret to the attacker. The attack will
succeed if the attacker can provide the LFSR feedback polynomial (cf. Figure 2).

To generalize the attack, we also assume that the attacker cannot determine the
first bit of the sequence, that means he has no information if a given sa sequence,
with |sa| = 2n (the length of the sequence), has been affected by exactly two trn
values (that means the attacker finds two exact LFSR rounds) or the sequence has
been modified by three trn values.

With probability 1
n , the sequence, sa with |sa| = 2n has been affected by exactly

two trn and, in this case, the probability to obtain the 2n values of the LFSR despite
the XORed trn is 1

4 (two consecutive zeros). That means that, with probability 1
4n , we

can obtain 2n values of the LFSR that composes the system and with this sequence we
are able to compute the feedback polynomial and the whole pseudorandom sequence.

9

...

Output

Che et al. PRNG
s1 sn s3n-1s3s2

| sa | = 3n-1

...

1

2

n

P (Bi = B0) =
n + 1
8n

trn⊕ LFSR(B0)

s2 s2n+1s4s3 ...

sn s3n-1sn+2sn+1 ...

s1 s2ns3s2 ...

|2n|
Eq. 1

Eq. 1

Eq. 1

B1

B2

Bn

(∀i = 1 . . . n)

Fig. 2 Attack scheme to the Che et al. PRNG

Now, assume that |sa| = 3n − 1. If the sequence is divided into n subsequences
of length 2n, we can ensure that one of these subsequences has been affected by
exactly two trn. The remainder n−1 subsequences, have been affected by three trn.
However, notice that if the three trn are zeros, the n vectors of length 2n will give
the same feedback polynomial. The probability of such event is 1

8 . Then, from this
fact, we can derive Equation 3 which provides the probability of success of an attack
that analyzes a sequence with |sa| = 3n− 1:

Psuccess(3n− 1) =
1
4

(
1
n

)
+

1
8

(
n− 1

n

)
=

n + 1
8n

(3)

Obviously, the probability of success increases with |sa| since increasing the |sa|
implies that more trn bits affect the sequence and then the probability of finding
three consecutive zeros also increases. Figure 3 shows the probability of success of
an attack with sa length for a particular system with a LFSR of length n = 16. Notice
that only 160 bits (10n) are enough to perform a successful attack with probability
higher than 50%, and 464 bits (29n) implies more than a 90% of success probability.

3.2.2 Obtained results

To test the correctness of the theoretical evaluation, the described attack has been
implemented over the same ten pseudorandom sequences (Ti) used to execute the
NIST tests (cf. Section 3.1).

The first analysis validates that the probability of finding the feedback polynomial
matches the one described in Equation 3. In this case, the algorithm takes |sa| =
3n − 1 bits from Ti starting at a random position and tries to attack the system by
finding n equal feedback polynomials. The operation is repeated one thousand times

10
Pr

ob
ab

ilit
y

0

0.2

0.4

0.6

0.8

1.0

| sa | - Eavesdropped bits
0 50 100 150 200 250 300 350 400 450 500

LFSR size (n) = 16

Fig. 3 Reliability on the Che et al. attack regarding |sa|

Table 2 Attack success rate for |sa| = 3n − 1

Sequence T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

attack success (%) 0.132 0.137 0.131 0.126 0.139 0.137 0.129 0.137 0.138 0.128

Table 3 Value of |sa| for a successful attack in the worst case after 10 tests

Sequence T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

|sa| 238 254 254 190 510 158 254 286 238 222

for each test sequence Ti. Attack success rates are reported in Table 2. Notice that
they are close to the theoretic value (n+1)

8n with n = 16 ≈ 0, 132.
The second analysis provides the number of bits needed to achieve a successful

attack. Ten different attacks have been performed for every Ti data sequence taking
the first bit of sa at random. Results presented in Table 3 show the number of bits for
a successful attack in the worst case, that is the attack that needs a major number of
bits. Notice that, although taking the worst case, the number of bits is significantly
lower than the whole period 216 − 1.

4 Attack implementation and empirical results

In this section, we present the RFID devices used to implement the attack. We also
describe the implementation scenario and the techniques used to eavesdrop the PRNG
from the RFID communication. Finally the practical results are presented.

4.1 Background on the IAIK UHF demo tag

The IAIK UHF demo tag [16] is a programmable device intended for developing new
commands or functionalities to the EPC Gen2 standard. It allows, moreover, to verify

11

the new functionality using compliant EPC Gen2 readers. We use this prototype to
demonstrate and validate the concepts discussed in the previous sections.

The demo tag consists of four main components: an antenna, a radiofrequency
(RF) front-end, a programmable microcontroller, and a firmware library. The antenna
captures the energy emitted by the reader and powers up the RF front-end of the tag.
The RF front-end demodulates the information encoded in the signal. The resulting
data feeds the programmable microcontroller which, in turn, computes a response.
To compute the response, the programmable microcontroller executes a software im-
plementation of the EPC Gen2 protocol, implemented as a firmware library. The re-
sponse is then modulated by the RF front-end and backscattered to the reader. We
present in the sequel a condensed background on these four components. More de-
tails can be obtained in [16,17].

Antenna and RF front-end

The antenna connected to the RF front-end consists of a 17cm dipole antenna. The RF
front-end utilizes a two-stage charge-pump rectifier to perform amplitude-shift key-
ing (ASK) demodulation. It demodulates the information stored in the signal trans-
mitted on the reader-to-tag channel. It does, indeed, rectification, voltage multiplica-
tion, and envelope detection all at once [17]. The power extracted by the rectifier from
the RF field emitted by the reader from most compliant EPC Gen2 readers amounts
to about 2.4mW. Since this is not enough to power the microcontroller, the demo tag
adopts a semi-passive approach, meaning that although the analog parts are powered
by the energy harvested from the reader, the digital parts (e.g., the programmable
microcontroller) are powered by an external power supply or by an on-board battery.
The backscattering of the information computed by the programmable microcon-
troller consists of the reflected power of the antenna. This power is indeed gener-
ated according to the transmitted data. The RF front-end of the demo tag combines
both ASK and PSK (phase-shift keying) to modulate information. The backscattering
components used by the demo tag to modulate the tag-to-reader signals consist of a
resistor, a capacitor, and a fast-switching transistor placed close to the antenna. These
components are controlled by the programmable microcontroller.

Programmable microcontroller and firmware Library

The programmable microcontroller connected to the RF front-end of the demo tag
consists of an Atmel AVR ATmega128 [18]. It contains all the logic and memory
necessary for the demo tag. The ATmega128 is an 8-bit microcontroller based on the
AVR architecture. The memory banks of the microcontroller, 128KB of flash mem-
ory and 4KB of data memory, can be addressed by three independent 16-bit registers.
In addition, the ATmega128 has 32 registers of 8-bits. All 32 registers can act as the
destinations of the ATmega128 arithmetic operations. The microcontroller operates
exactly one instruction per clock cycle, at frequencies up to the order of 16MHz.
An external crystal oscillator connected to the demo tag provides the 16MHz signal
to the microcontroller. Three main signals connect the microncontroller to the RF

12

front-end. A first signal, called DEMOD, provides the demodulated ultra high fre-
quency (UHF) signal from the reader-to-tag channel. A second signal, called MOD,
allows the ATmega128 to control the backscatter used to generate the tag-to-reader
responses. Finally, a third signal, called RF ON, provides a boolean value to detect
the presence of the RF field.

The original IAIK UHF demo tag already provides an appropriate implementa-
tion of the EPC Gen2 protocol for the ATmega128. The protocol is implemented as
a firmware library stored in the flash memory of the microcontroller. This library
contains all the functions necessary to process the readers’ standard queries and to
compute the appropriate responses. The microcontroller is connected, via an UART
module, to a serial-interface connector. This serial interface allows to interact with
the demo tag, to provide basic operations such as memory mapping, EPC Gen2 val-
ues’ configuration, visualization of queries and responses exchanged with compliant
readers, and execution of user defined operations. This latter allows to complement
the original protocol implementation with new functionalities defined at a user level.
By using the JTAG connector provided by the demo tag, it is possible to upload new
functionalities to the flash memory of the microcontroller, as well as to perform pro-
gram debugging. A combination of C code and assembly code can be used to com-
plement or modify the original firmware library. A JTAG download cable allows the
transfer of new functionalities or firmware updates. Some other modules connected
to the demo tag allow more complex programming possibilities, such as FPGA-based
UHF protocol implementations. We refer the reader to [16,17], and citations thereof,
for more information.

4.2 Che et al. implementation and experimental setup

In Section 3.2, we have seen how to attack the pseudorandom number generator pro-
posed by Che et al. once a sufficient number of pseudorandom values are collected.
We show in this section the results of a practical attack against the vulnerable scheme
on a real Gen2 setup. The attack is based on the eavesdropping of the communica-
tion between a standard EPC Gen2 reader and the demo tag. Indeed, we show how it
is possible to obtain an appropriate set of random queries generated by an on-board
PRNG, based on the Che et al. scheme, to eventually predict the generation of pseu-
dorandom sequences that will be generated later over the demo tag. Figure 4 shows
our experimental setup.

The Che et al. scheme has been implemented in ANSI C using the Crossworks
IDE for AVR from Rowley Associates [19]. The original scheme provided in [4] has
been adapted into a code-optimized EPC Gen2 version that can be executed over the
microcontroller of the IAIK UHF demo tag. Arithmetic efficient functions such as
bit shifts, logic operators (AND, OR and XOR) and modulo 2, are used to implement
the LFSR in the demo tag [13]. The trn addition is extracted from the less significant
bits of the analogical to digital conversion in the demo tag’s microcontroller. Since
the generation of pseudorandom sequences is a mandatory operation specified in the
EPC Gen2 protocol, an existing PRNG function is already included in the original
firmware. By using the Crossworks IDE, we code and merge the PRNG based on the

13

(a) (b)

Fig. 4 Experimental setup. In (a), we can see the CAEN A829EU Reader, the AVR JTAG MKII Program-
mer, and the IAIK Graz UHF Demo Tag. In (b), we can see the Crossworks IDE GUI for AVR, uploading
the updated firmware over the demo tag

Che et al. scheme with the general firmware library to replace the existing PRNG.
The JTAG programmer that we use to transfer and to debug the updated firmware
merged with the new PRNG implementation is an AVR JTAG MKII programmer
[18]. The queries are generated from a standard RFID reader according to EPC Gen2.
The RFID reader we use is a short-range reader CAEN A829EU [20]. The reader is
controlled by a desk computer over a USB serial port. For the generation of queries,
we use a .NET application that controls the communication process with the reader.
This application enable us to generate the set of queries required to proceed with the
eavesdropping attack. Finally, we use Matlab to decode the set of responses gener-
ated over the demo tag. This operation enable us to isolate the pseudorandom queries
computed at the demo tag. When the number of sequences collected by the applica-
tion reaches an appropriate threshold, it proceeds to execute the implementation of
the attack we presented in Section 3.2. We provide in the sequel further details about
the collection of pseudorandom sequences and the practical results.

4.3 Eavesdropping of pseudorandom sequences and practical results

Due to the Gen2 RF power range characteristics, a realistic attack should only con-
sider reader-to-tag queries because they are much easier to be eavesdropped [7].
Some reader-to-tag queries include pseudorandom sequences (hereinafter denoted

Table 4 Minimum number of RN16s involved in EPC Gen2 operations

Operation Inventory Access

Command Identification Read Write Lock Kill
Number of RN16s 1 2 8 2 4

14

EPC Gen2
Reader Tag

RN16a

RN16b

RN16c

RN16d

RN16e

RN16f

RN16g

RN16h

. . .

Query
RN16
Ack

EPC

Req_RN
handle

Req_RN
RN16

Write_1

Req_RN
RN16

Write_6
handle

handle

11

EPC Gen2
Reader Tag

RN16a

RN16b

RN16c

RN16d

RN16e

RN16f

RN16g

RN16h

. . .

Query
RN16
Ack

EPC

Req_RN
handle

Req_RN
RN16

Write_1

Req_RN
RN16

Write_6
handle

Fig. 3 Write process for EPC Gen2 and the PRNG utilization.

Table 5 EPC = 0 Write sequence generated with Che et al. PRNG.

=> QUERY ...
=> ACK ...
=> Req RN RN:14438
=> Req RN RN:44282
=> Write (data) 27698
=> Req RN RN:44282
=> Write (data) 47380
=> Req RN RN:44282
=> Write (data) 44282
=> Req RN RN:44282
=> Write (data) 60868
=> Req RN RN:44282
=> Write (data) 32656
=> Req RN RN:44282
=> Write (data) 34674

bits. The attack consists on the analysis of the linearity relation for each single write gener-
ated data, trying to find the feedback polynomials of the LFSR in 128 bits. The total ratio of
success is 41.5% (cf. Fig. 4), very close to the 42% theoretically predicted in Section 3.4.2.
Thus we are able to confirm the vulnerability of the Che et al. PRNG for Gen2 environments.

(a) EPC Gen2 write protocol. (b) Real capture of six write cycles.

Fig. 5 Write process for EPC Gen2 and the PRNG utilization. In (a), we can see the six cycles of the EPC
Gen2 write command. In (b), we can see a real sample of six write cycles captured from the reader-to-tag
channel

as RN16s) that are computed from the on-board PRNG included on the EPC tags.
Table 4 shows the mandatory operations for Gen2 reader-to-tag protocol and the min-
imum number of RN16s involved in each operation. Notice that the write command
generates a minimum of eight RN16s for its proper execution. For a full EPC code
writing, up to six RN16s must be generated to cover the reader-to-tag communica-
tion, besides the two previously generated pseudorandom sequences for the inventory
query and the handle descriptor [3].

A write operation is an access command used to modify specific areas of a Gen2
tag memory. The reader first identifies the tag with select and inventorying commands
(what shifts the tag from ready to acknowledged state). Once the tag is acknowledged
(meaning that the tag has sent its EPC identification) the reader requests a new RN16
to the tag for establishing an access session. The new RN16 (denoted as handle) acts
as a session key, and must be used to link all the access actions to a specific tag. Let
us observe that all access commands can be executed both in the open or secured
tag state [3]. If the accessed tag is in the secured state, it means a 32-bit password
(exchanged as two 16-bit half-passwords XORed with two RN16s) is necessary to
allow the reader to access the tag. In our experiments, we assume that the tag is in the
open state, i.e., we do not consider the capture of PRNGs derived from the exchange
of the two half-passwords. In this way, an inventoried tag transitions directly to the
access mode. For a write operation once the reader gets the handle, it initiates a round
of writes of 16-bit data sequences (obscured with previously requested RN16s) to
the tag. Thus, if a new EPC identification is written to the tag, six �write cycles are
performed, as we picture in Figure 5(a). The eight generated RN16s represent 128

15
At

ta
ck

 s
uc

ce
ss

 (%
)

36%

38%

40%

42%

44%

46%

Demotag generated sequences (1000 write challenges)
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Theoretical rate
Attack rate

Fig. 6 Che et al. PRNG attack success for real Gen2 environment

consecutive bits generated from the PRNG of an EPC Gen2 tag, as specified in the
standard [3].

As we pointed out in Section 3.2, the Che et al. scheme can be predicted with a
reasonable small amount of data. We can now demonstrate this property in our real
Gen2 environment, by simply performing an appropriate series of write challenges
to the adapted Che et al. PRNG implemented over the demo tag, and analyzing the
resulting RN16s. More precisely, we show that by simply collecting 128 bits (gen-
erated from a series of eight RN16s associated to each write challenge) is enough
to obtain the feedback polynomial of the LFSR with a confidence of about 42%.
This value is consistent with the analytical results we anticipated in the previous sec-
tion, and that are depicted in Figure 3. Figure 5(b) shows a simple example where
six write cycles are captured. These captures allow us to collect 96 pseudorandom
bits generated from the on-board Che et al. PRNG. The sequences are parsed from
the matlab code that we feed with the serial interface output of the demo tag. Only
reader-to-tag challenges are shown. The reader writes the EPC identification to 0
(EPC96b = 0i b...(i+16) b ⊕ RN16), to obtain the RN16s directly from the ciphered
data field of the write challenges.

The complete set of experiments that we summarize in Figure 6 consists of ten
series of write commands. Each of these series generates a total of 1,000 write chal-
lenges from the A829EU reader to the demo tag. As a result, 8,000 RN16s, i.e.,
128,000 pseudorandom bits, are captured in total. These pseudorandom bits are com-
puted from the Che et al. PRNG implementation deployed over the demo tag. Once
stored, the pseudorandom sequences are processed by the matlab code that contains
the attack implementation. Let us recall that the attack applies the analysis of the
linearity relation for each single write challenge. We show that the attack finds the
appropriate feedback polynomials of the LFSR each 128 bits with a total ratio of suc-
cess of 41.5%. This result is very close to the 42% that we predicted in Section 3.2
(Figure 3). Therefore, we are able to confirm the vulnerability of the Che et al. PRNG
for Gen2 environments.

16

5 Conclusions

Pseudorandom number generators (PRNGs) are the crucial components that guaran-
tee the confidentiality of EPC Gen2 [3] RFID communications. In this paper, we have
described the problems of using linear feedback shift registers (LFSRs) as underlying
mechanisms for the implementation of low-cost PRNGs. Without appropriate mea-
sures that increase their cost, the linearity of LFSR-based PRNGs lead to insecure
implementations. We have analyzed a cost-effective PRNG proposal for EPC Gen2
devices presented by Che et al. [4]. The proposal combines thermal noise signal mod-
ulation and an underlying LFSR. We have indeed demonstrated that the proposal does
not handle properly the inherent linearity of the resulting PRNG. We have described
an attack to obtain the feedback polynomial function of the LFSR. This allows us to
synchronize and to predict the resulting sequences generated by the Che et al. PRNG.
We have presented the implementation of a practical attack in a real EPC Gen2 sce-
nario. By means of a compatible Gen2 reader, and a programmable Gen2 tag [16]
implementing the Che et al. PRNG, we have shown that an attacker can obtain the
PRNG configuration with a confidence of 42% by only eavesdropping 128 bits of
pseudorandom data. Although the attack implementation has been applied to a spe-
cific PRNG proposal, the procedure used to obtain the data is based on standard EPC
commands and it can be applied to any EPC tag communication to eavesdrop the out-
put of the PRNG. Future work goes towards designing an efficient and robust PRNG
that fulfills the specific restrictions of EPC Gen2 tags, following the work presented
in [10].

Acknowledgements This work has been supported by the Spanish Ministry of Science and Innovation,
the FEDER funds under the grants TSI2007-65406-C03-03 E-AEGIS, CONSOLIDER CSD2007-00004
ARES, an IN3-UOC doctoral fellowship, and the Institut TELECOM through its Futur et Ruptures pro-
gram.

References

1. J. Garcia-Alfaro, M. Barbeau, and E. Kranakis. Analysis of Threats to the Security of EPC Networks.
6th Annual Communication Networks and Services Research (CNSR) Conference, IEEE Communi-
cations Society, Halifax, Nova Scotia, Canada, May 2008.

2. J. Garcia-Alfaro, M. Barbeau, and E. Kranakis. Security threats on EPC based RFID systems. 5th In-
ternational Conference on Information Technology: New Generations (ITNG 2008), IEEE Computer
Society, Las Vegas, Nevada, USA, April 2008.

3. EPCglobal. (2008). EPC Radio-Frequency Identity Protocols Class-1 Generation-2
UHF RFID Protocol for Communications at 860-960 MHz. http://www.epcglo-
balinc.org/standards/.Accessed 15 July 2010.

4. Che, W., Deng, H., Tan, X., and Wang, J. (2008). Chapter 16, A Random Number Generator for
Application in RFID Tags. In Cole, P.H. and Ranasinghe, D.C. (Eds.), Networked RFID Systems and
Lightweight Cryptography (pp. 279–287). Berlin: Springer-Verlag.

5. Ranasinghe, D.C. and Cole, P.H. (2008). Chapter 8, An Evaluation Framework. In Cole, P.H. and
Ranasinghe, D.C. (Eds.), Networked RFID Systems and Lightweight Cryptography (pp. 157–167).
Berlin: Springer-Verlag.

6. Feldhofer, M. and Rechberger, C. (2006). A Case Against Currently Used Hash Functions in RFID
Protocols. In Meersman, R. et al. (Eds.), On the Move to Meaningful Internet Systems 2006: OTM
2006 Workshops (pp. 372–381). Berlin: Springer-Verlag.

17

7. Peris-Lopez, P. (2008). Lightweight Cryptography in Radio Frequency Identification (RFID) Systems.
PhD Thesis.http://www.lightweightcryptography.com/. Accessed 15 July 2010.

8. Garcia, F., Koning, G., Muijrers, R., van Rossum, P., Verdult, R., Wichers R. and Jacobs, B. (2008).
Dismantling MIFARE Classic. In Jajodia, S. and Lopez, J. (Eds.), Computer Security - ESORICS
2008 (pp. 97–114). Berlin: Springer-Verlag.

9. Peris-Lopez, P., Hernandez-Castro, J., Estevez-Tapiador, J. and Ribagorda, J. (2009). LAMED — A
PRNG for EPC Class-1 Generation-2 RFID specification. Computer Standards & Interfaces, 31(1),
88–97.

10. Melia-Segui, J., Garcia-Alfaro J. and Herrera-Joancomarti, J. (2010). Analysis and Improvement
of a Pseudorandom Number Generator for EPC Gen2 Tags. In Curtmola, R. et al. (Eds.), Financial
Cryptography and Data Security 2010 Workshops, LNCS (pp. 34–46). Berlin: Springer-Verlag.

11. Herlestam, T. (1995). On Functions of Linear Shift Register Sequences. Advances in Cryptology
EUROCRYPT’ 85, LNCS. doi: 10.1007/3-540-39805-8.

12. Chen, C.L. (1986). Linear Dependencies in Linear Feedback Shift Registers. IEEE Transactions on
Computers, C-35(12), 1086-1088.

13. Schneier, B. (1996). Applied Cryptography. John Wiley & Sons.
14. Joux, A. (2009). Algorithmic Cryptanalysis. Chapman & Hall/CRC, Taylor & Francis Group.
15. National Institute of Standards and Technology. (2008). Random number generation.

http://csrc.nist.gov/groups/ST/toolkit/rng/. Accessed 15 July 2010.
16. SIC, Stiftung Secure Information and Communication Technologies. (2009). UHF RFID Demo

Tag. http://jce.iaik.tugraz.at/sic/products/rfid components. Accessed 15
July 2010.

17. M. Aigner et al. (2007). BRIDGE — Building Radio frequency IDentification for
the Global Environment. Report on first part of the security WP: Tag security (D4.2.1).
http://www.bridge-project.eu/. Accessed 15 July 2010.

18. Atmel Corporation. (2009). http://www.atmel.com/. Accessed 15 July 2010.
19. Rowley Crossworks IDE. (2009). Crossworks v1.4 and v2.0 for AVR.

http://www.rowley.co.uk/. Accessed 15 July 2010.
20. CAEN RFID. (2009). http://www.caen.it/rfid. Accessed 15 July 2010.

