Model-driven Extraction and Analysis of
Network Security Policies

Salvador Martinez', Joaquin Garcia-Alfaro®, Frédéric Cuppens?, Nora
Cuppens-Boulahia? and Jordi Cabot!

L AtlanMod, Ecole des Mines de Nantes - INRIA, LINA, Nantes, France
{salvador.martinez perez, jordi.cabot}@inria.fr
2 Télécom Bretagne; LUSSI Department Université Européenne de Bretagne, France
forename.surname@telecom-bretagne.eu
3 Télécom SudParis; RST Department CNRS Samovar UMR 5157, Evry, France
joaquin.garcia_alfaro@telecom-sudparis.eu

Abstract. Firewalls are a key element in network security. They are
in charge of filtering the traffic of the network in compliance with a
number of access-control rules that enforce a given security policy. In
an always-evolving context, where security policies must often be up-
dated to respond to new security requirements, knowing with precision
the policy being enforced by a network system is a critical information.
Otherwise, we risk to hamper the proper evolution of the system and
compromise its security. Unfortunately, discovering such enforced policy
is an error-prone and time consuming task that requires low-level and,
often, vendor-specific expertise since firewalls may be configured using
different languages and conform to a complex network topology. To tackle
this problem, we propose a model-driven reverse engineering approach
able to extract the security policy implemented by a set of firewalls in
a working network, easing the understanding, analysis and evolution of
network security policies.

1 Introduction

Firewalls, designed to filter the traffic of a network with respect to a given
number of access-control rules, are key elements in the enforcement of network
security policies.

Although there exist approaches to derive firewall configurations from high-
level network policy specifications[I8/4], these configuration files are still mostly
manually written, using low-level and, often, vendor-specific rule filtering lan-
guages. Moreover, the network topology, that may include several firewalls (po-
tentially from different vendors), may impose the necessity of splitting the en-
forcement of the global security policy among several elements. Due to the com-
plexity of the process, is likely that we end up with differences between the
implemented policy and the desired one. Moreover, security policies must be
often updated to respond to new security requirements, which requires evolving
the access-control rules included in the firewall configuration files.

Therefore, there is a clear need of an easy way to represent and understand
the security policy actually enforced by a deployed network system. At the mo-
ment, this still requires a manual approach that requires, again, low-level and
vendor-specific expertise. Given a network system consisting in several firewalls
configured with hundreds of rules, the feasibility of this manual approach could
be seriously questioned. While the security research community has provided
a plethora of works dealing with the reasoning on security policies, succeeding
at providing a good analysis and verification of the low-level firewall rules, we
believe they fail at obtaining a comprehensive solution as they do not provide
a high-level, easy to understand and manage representation nor take, generally,
networks composed by several heterogeneous firewalls into account. Moreover,
the extraction step is often neglected and the solution presented over synthetic
rules without providing the means to bridge the gap between them and the real
configurations.

In this sense, we believe that an integrated solution is missing. We believe
such a solution must have the following features. First, it has to provide inde-
pendence from the concrete underlying technology, so that the focus can be put
into the security problem and not in implementation mechanisms like chains,
routing tables, etc. Second, it has to provide a higher-level representation so
that the policy becomes easier to understand, analyse and manipulate. Third,
the solution, to be comprehensive, must take into account the contribution of
each policy enforcing element (firewall) to the global policy, as the partial picture
given by isolated firewalls does not provide enough information to understand
the network policy.

In this joint work between the modeling and the security communities, we
propose a model-driven approach aimed at covering this gap. Our approach,
first, extracts and abstracts the information of each firewall configuration files
to models conforming to a Platform-independent metamodel specially tailored
to represent network-access control information in an efficient and concise way.
Then, after performing structural verification of the information in the individ-
ual models, it combines these models to obtain a centralised view of the security
policy of the whole network. Finally, this global network access-control model
can be analysed and further processed to derive useful information. As en exam-
ple, we analyse the structure of its contents to derive the network topology the
firewalls operate on. Then, we provide a mapping to obtain a representation of
the policy in XACML, a standardised access-control model, enabling the (re)use
of the many tools developed to work with the standard.

We validate the feasibility of our approach by providing a prototype imple-
mentation working for firewalls using the netfilter iptables and Cisco PIX rule
filtering languages. Our prototype can be easily extended to work with any other
packet-filtering languages.

The rest of the paper is organized as follows. Section [2| presents a motivat-
ing and running example of a network. In Section [3| we present and detail our
approach whereas in Section [4] we present some application scenarios. In [5] we

discuss a prototype implementation. Section [f] discusses related work. The paper
finishes in Section [with some conclusions and future works.

2 Motivation

Intranet

111.222.2.54

Firewall 1 Firewall 2

111.222.1.10

111.222.100.1 111.222.1.254
Ii I m SrvAdmin
I DNS Server n
111.222.1.17 -
n a —
il =

Private hosts

111.222,2.*

111.222.2.1

x
111.222.1.1 MultiServer

Fig. 1. Network example

In order to motivate our approach, we present here a network example that
will be used through the rest of the paper.

Let us consider we have a De-Militarized Zone (DMZ) network architecture
like the one depicted in Figure This is a very common architecture used
to provide services both to a local network and to the public untrusted network
while preventing the local network to be attacked. It is composed by the following
elements:

— An intranet composed by a number of private hosts where one of the private
hosts acts as an administrator of certain services provided by the network
system.

— A DMZ that contains two servers. A DNS server and a multiserver providing
the following services: HTTP/HTTPS (web), FTP, SMTP (email) and SSH.

— Two firewalls controlling the traffic towards and from the DMZ. The first
firewall controls the traffic between the public hosts (the Internet) and the
services provided by the DMZ. The second firewall controls the traffic be-
tween the intranet and the DMZ.

The two firewalls in charge of enforcing the security policy of our example
network, could be of the same kind. However, following the defense in depth[I]
security strategy, it is highly recommended, to use two different firewalls so that
a possible vulnerability does not affect the whole network. In our example, the
firewall 1 is a linux iptables packet-filtering firewall whereas firewall 2 is a Cisco
firewall implementing Cisco PIX filtering.

In Listing we show an excerpt of the configuration file of firewall 1 wrt
the HTTP and SMTP services. It controls the traffic from the public hosts to
the services provided in the DMZ. This sample configuration uses the netfilter
iptables[I9] rule language. Note that this configuration file is written using the

iptables custom chains feature, which allows the user to define exclusions to
rules without using drop or deny rules.

First, it states in the first three lines that the global policy for the firewall
is the rejection of any connection not explicitly allowed. Then, the first chain
controls the outcoming SMTP messages towards the public host. It allows them
for every hosts but for the host in the local network. The second chain controls
the incoming SMTP messages to the server. If the request is done through one
machine belonging to the local network, it is rejected while it is allowed for any
other machine. The third rule controls the HT'TP requests from the public hosts.
Again, connections are allowed for any host but for the local ones.

Listing 1.1. Firewall 1 netfilter configuration
iptables —P INPUT DROP
iptables —P FORWARD DROP
iptables —P OUTPUT DROP
iptables —N Qut_SMTP
iptables —A FORWARD —s 111.222.1.17 —d 0.0.0.0/0 —p tcp ——dport 25 —j Out_SMTP
iptables —A Qut_SMTP —-d 111.222.0.0/16 —j RETURN
iptables —A Out_SMTP —j ACCEPT
iptables —N In_SMPT
iptables —A FORWARD —s 0.0.0.0/0 —d 111.222.1.17 —p tcp ——dport 25 —j In_SMTP
iptables —A In_SMTP —-s 111.222.0.0/16 —Jj RETURN
iptables —A In_SMTP —j ACCEPT
iptables —N NetWeb_HTTP
iptables —A FORWARD —s 0.0.0.0/0 —d 111.222.1.17 —p tcp ——dport 80 —j NetWeb_HTTP

iptables —A NetWeb_HTTP —-s 111.222.0.0/16 —j RETURN
iptables —A NetWeb_HTTP —j ACCEPT

Firewall number 2 controls the traffic from the private hosts to the services
provided in the DMZ. Listing shows the rules that control the access to the
SMTP and HTTP services. It is written in the Cisco PIX language that does
not provide support to a feature like the iptables custom chains.

Rules one to six, control the SMTP requests to the server. They are all al-
lowed for the hosts in the private zone discarding only the administrator host,
identified by the IP address 111.222.2.54, and for a free-access host, identified
by IP address 111.222.2.53. Rules seven to twelve do the same for the HTTP
requests. Again, HTTP requets are allowed for all the hosts in the private zone
discarding only the administrator host and the free-access host.

Listing 1.2. Firewall 2 Cisco PIX configuration

access—list ethl_acl_in remark Fw2Policy o0 (global)
access—list ethl_acl_in deny tcp host 111.222.2.54 111.222.1.17 eq 25

access—list ethl_acl_in remark Fw2Policy 1 (global)
access—list ethl_acl_in deny tcp host 111.222.2.53 111.222.1.17 eq 25

access—list ethl_acl_in remark Fw2Policy 2 (global)
access—list ethl_acl_in permit tcp 111.222.2.0 255.255.2

o
o
(=}

111.222.1.17 eq 25

access—list ethl_acl_in remark Fw2Policy 4 (global)
access—list ethl_acl_in deny tcp host 111.222.2.54 111.222.1.17 eq 80

access—list ethl_acl_in remark Fw2Policy 5 (global)
access—list ethl_acl_in deny tcp host 111.222.2.53 111.222.1.17 eq 80

access—list ethl_acl_in remark Fw2Policy 3 (global)
access—list ethl_acl_in permit tcp 111.222.2.0 255.255.255.0 111.222.1.17 eq 80

access—group ethl_acl_in in interface ethl

2.1 Example Evaluation

Faced with this example, a security expert willing to understand the enforced
access control rules will have to directly review the configuration files of the fire-
walls in the system (disregarding the low-level and often incomplete management
tools provided by the firewall vendors, obviously only valid for the firewalls of
that vendor), which in this case, involves two different rule languages. Not even
the topology picture of the network, provided here with the purpose of easing
the discussion, can be taken for granted but instead needs to be derived from
the configuration files themselves.

Therefore, we can see that the task of extracting the global access control
policy enforced by the set of rules in these two firewalls (that are just minimal
excerpts of what a full configuration policy would be) requires expert knowl-
edge about netfilter iptables and Cisco PIX. Its syntax along with its execution
semantics would have to be mastered to properly interpret the meaning of the
configuration files. Moreover, the information from the two configuration files
and the default policies would have to be combined as they collaborate to en-
force the global policy and can not be regarded in isolation.

In corporate networks potentially composed by up to a thousand firewalls,
composed by hundreds of rules and potentially from different vendors using
different configuration languages and execution semantics, the task of manually
extracting the enforced access control policy would become very complex and
expensive, seriously hampering the analysis and evolution tasks the dynamic
environment of corporations impose. This is the challenge our approach aims to
tackle as described in the next sections.

3 Approach

This section details our MDE approach to generate a high-level platform-independent
model providing a global view of all access-control rules in a set of firewall con-
figurations files.

(N
CONFIGURATION PSMs PIM VERIFICATION AND

FILES V> analysis OTHER OPERATIONS V)
N global
N I&I I& Iﬁ V) analysis &
|J> [Fsuae> ,Au/u\u DP;>|>
N
AR 7

Other
k LA J J representations/

— Grammarware — Modelware

Fig. 2. Extraction approach

Our model-driven reverse engineering approach, that extends the preliminary
one in [I4], is summarized in Figure |5} It starts by injecting the information

contained in the firewall configuration files into platform-specific models (PSMs).
Afterwards, each PSM is translated into a different network access-control PIM
and an structural analysis to detect misconfigurations is performed. These PIMs
are then aggregated into a global model, representing the access-control policy
of the whole network. Operations are also performed over this global model to
classify the information in locally or globally relevant.

3.1 Injection

The first step of our approach constitutes a mere translation between technical
spaces where the textual information in the configuration files is expressed in
terms of models. A PSM and a parser recognizing the grammar of each con-
crete firewall rule-filtering language present in the network system is required.
In Listing we excerpt a grammar for CISCO PIX whereas in Section [5] we
show how we use it to obtain the corresponding parser and PSM. Due to space
limitations, we do not show here the grammar for the linuz Iptables filtering
language (it is available on the web of the project [2]). The integration of any
other language will follow the same strategy.

Listing 1.3. Cisco grammar excerpt

Model:
rules 4= Rulex;
Rule:
AccessGroup | AccessList;
AccessGroup:
’access—group’ id=ID 'in’ ‘interface’ interface=Interface;
Interface:
id=ID;
AccessList:
('no’)? 'access—list’ id=ID decision=(’'deny’ | ’permit’) protocol=Protocol

protocolObjectGroup=ProtocolObjectGroup

serviceObjectGroup=ServiceObjectGroup

networkObjectGroup=NetworkObjectGroup;
ProtocolObjectGroup:

(pogId=ID)? sourceAddress=IPExpr sourceMask=MaskExpr:
ServiceObjectGroup:

tar%etAddress:IPExpr targetMask=IPExpr;
NetworkObjectGroup:
operator=0perator port=INT;
Operator:
name=('eq’ | 'lt’ | 'gt’);
Protocol:
name= (’tcp’| ‘'udp’ | ’ip’);
IPExEr:
NT ->.> INT -.°> INT >.° INT;

Note that this step is performed without losing any information and that the
obtained models remain at the same abstraction level as the configuration files.

3.2 Platform-specific to Platform-independent model

The second step of our approach implies transforming the PSMs obtained in the
previous step to PIMs so that we get rid off the concrete details of the firewall
technology, language and even writing style. Central to this step is the defini-
tion of a Network access-control metamodel able to represent the information
contained in the PSMs. In the following we present and justify our proposal for
such a metamodel.

Generally, firewall access-control policies can be seen as a set of individual
security rules of type R; : {conditions} — {decision}, where the subindex i

specifies the ordering of the rule within the configuration file, decision can be
accept or deny and conditions is a set of rule matching attributes like the source
and destination addresses, the used protocol and the source and destination port.

Such a policy representation presents several disadvantages. First of all, the
information is highly redundant and disperse, so that the details relevant to a
given host or zone may appear, unassociated, in different places of the configura-
tion file (potentially, containing up to several hundreds of rules). Metamodeling
and model-driven technologies contain a big potential to reduce this issues, how-
ever, a proper representation must be chosen in order to maximize its benefits.

Second, this representation is not suited for representing the firewall policy
in a natural and efficient way. Although firewall policies could be written by
only using positive or negative logic (what leads however to over-complicated
and not natural rule sets, impacting legibility and maintainability) a firewall
access-control policy is better explained by expressing just rules in one sense
(either negative or positive) and then exceptions (see [I0] for a detailed study
of the use of exceptions in access control policies) to the application of these
rules. This way, in a close policy environment (where everything not explicitly
accepted is forbidden) it is very common to define a security policy that first
accepts the traffic from a given zone and then deny it only for some elements
of the zone. Native support for the representation of exceptions simplifies the
representation and management of network policies while decreasing the risk of
misconfiguration. The custom chains mechanism, recently provided by the linux
iptables filter language, evidences the need for such a native support.

3.2.1. Network Access-control Metamodel. The platform independent net-
work access-control metamodel we propose here (see Figure [3) provides support
for the representation of rules and exceptions. Moreover, our reverse engineering
approach is designed to recover an exception-oriented representation of network
security policies from configuration files disregarding if they use a good repre-
sentation of exceptions like in the iptables example in Section [2] or not, like in
the Cisco PIX example in the same section.

Network Element Sf“rce L.*! Connection

+ipAddr 1. +srcPort

0. l+netMask target “+dstPort

1 +decision

1, *|*order
~—+isShadowed

’ ‘ ‘ ‘ +isRedundant

1 +islLocal

firewall T

Exception

elements

Zone| (Host| [Server| [Firewall

0..*
exceptions

Fig. 3. Filter PIM excerpt

Our metamodel proposal contains the following elements (note that, for sim-
plicity, some attributes and references are not represented in the image):

— Network Element. Represents any subject (source of the access request) or
object (target of the access request) within a network system. It is charac-
terised by its ip address and its network mask.

— Zone, Host, Server and Firewall. Several different types of Network Element
may exist in a network environment. For the purpose of this paper, the rel-
evant ones are: Host, Zone which in turn, contains other Network Elements,
Server and Firewall. However, the list of elements can be extended to manage
different scenarios, like the presence of routers, intrusion detections systems
(IDSs), etc.

— Connection. Represents a connection between Network Elements. Apart from
its source and target Network Elements, it is characterized by the following
attributes: source and destination port, identifying the requested service; de-
cision, stating if the connections is accepted or denied (our metamodel can
represent open, close and mixed policies); order, reflecting the rule ordering
in the corresponding configuration file; firewall, that identifies the firewall
from where the connections were extracted; isLocal that tells is the connec-
tion is only locally relevant, isShadowed that identifies the connection as
not reachable and finally, isRedundant, stating that the connection can be
removed without affecting the policy.

— FException. A connection may contain several exceptions to its application.
These exceptions are connections with opposite decisions matching a subset
of the elements matched by the containing connection.

3.2.2. PSM-to-PIM transformation. Our PIM metamodel provides the
means for representing network access-control policies in a concise and organised
way. However, a proper processing of the information coming from the configu-
ration files is required in order to fully exploit its capacities (a policy could be
represented by using only Connections without using the Ezception element).
Therefore, the process of populating the PIM model from a PSM model is com-
posed by two sub-steps.

The first sub-step fills our PIM with the information as it is normally found
in configuration files, i.e., in the form of a set of rules representing exceptions
with mixed positive and negative logic. However, this representation can lead
to policy anomalies and ambiguities. Concretely, as defined in [§], a firewall rule
set may present the following anomalies:

Rule shadowing: a rule R is shadowed when it never applies because another
rule with higher priority matches all the packets it may match.

Rule redundancy: a rule R is redundant when it is not shadowed and removing
it from the rule set does not change the security policy.

Rule irrelevance: a rule R is irrelevant when it is meant to match packets that
does not pass by a given firewall.

Thus, the second sub-step, refines the initial PIM model and improve its in-
ternal organization to deal with the aforementioned problems. More specifically,
this step applies the following algorithm on the PIM model (we describe the
process for closed policies with exceptions, however, a version adapted to open
policies would be straightforward):

1. Collect all the Connection elements C whose decision is Accept.

2. For each retrieved Connection Cj;, get Connections C; with the following
constraints:
(a) C; decision is Deny
(b) Cj conditions match a subset of the set matched by the conditions of C;.
(c¢) Cj ordering number is lower than the C; ordering number (if not, mark

C; as shadowed).

Then, for each retrieved C; create an Ezxception element and aggregate it to
the C;. Remove the C; Connection.

3. For each remaining Connection element C; whose decision is Deny and is-
Shadowed equals false:

- mark C} as isRedundant

The algorithm we have presented is a modification of the one presented in
[9], e.g. to drop the requirement of using as input policy one free of shadowing
and redundancy. On the contrary, it is meant to work on real configurations
and helps to discover these anomalies: shadowed deny rules and redundant deny
rules. The security expert can retrieve them easily from the PIM as any left
Connection in the PIM with decision Deny is an anomaly and as such is marked
as isShadowed or as isRedundant.

This algorithm can be complemented by a direct application of additional
algorithms described in [§] to uncover other less important anomalies. Note that
the correction of these anomalies will often require the segmentation and rewrit-
ing of the rules, therefore we consider the correction as an optional step to be
manually triggered by the security expert after analysing the detected anomalies.

3.3 Aggregation of individual PIMs

At the end of the previous step we get a set of PIM’s (one per firewall in the
network). Clearly, an individual firewall gives only a partial vision of the security
policy enforced in the whole network. In our example, analyzing one firewall will
yield that the public host can access the SMTP server, however, this server can
be also accessed by the private network with some exceptions. Thus, in order
to obtain a complete representation of the network policy the individual PIM
models have to be combined into one global network access-control model. Note
that as we keep information regarding which firewall contains a given Connection
element and the ordering with respect to the original configuration file, this step

10

would be reversible, so that the individual policies may be reproduced from the
global model.

We obtain the global model by performing a model union operation between
the individual models, so that no Network Element or Connection is duplicated.
Then, as an extra step, a refining transformation is performed to assign the
proper type to the Network Elements. This step is performed by analysing the
1p addresses and the incoming and outgoing connections. This way, we are able to
establish if a network element is a zone or being an individual network element
behaves as a host or a server (an unique firewall element is created upon the
initialization of each PIM model in order to represent the firewall the rules
come from). Once we have obtained the global model, some operations become
available.

First of all, local Fzceptions and Connections, i.e., Exceptions and Connec-
tions that only make sense in the context of a concrete firewall, can be iden-
tified (so that they can be filtered out when representing the global policy.).
Local exceptions are usually added due to the mechanisms used to enforce the
global policy. As en example, in the Listing the elements in the network zone
222.111.0.0 are not allowed to send or receive smtp messages. However, elements
in 222.111.2.0 are allowed to send them regarding the configuration Listing [1.2
This contradiction is due to the enforcing architecture that imposes the traffic
to pass through a certain firewall (in this case, hosts in the local network are
meant to access the DMZ through the second firewall). The algorithm to detect
local Ezceptions and Connections works as follow:

1. Collect all the Ezceptions E in the aggregated model.
2. For each Ezception E;, L is a set of Connections C with the following con-
straints:
(a) C; is retrieved from a firewall different that the one containing F;
(b) C; conditions , are subset (or equal) of E; conditions.
If the obtained set of Connections L is not empty:
— Mark E; as local.
— For each C; in L, mark C; as local if it has not been already marked.

This will be also useful when extracting a representation of the network topology
covered by the firewalls (see next section).

4 Application Scenarios

Once all the access-control information is aggregated in our final PIM, we are
able to use the model in several interesting security application scenarios.

Metrics and advanced queries. First of all, having the access-control informa-
tion of a network represented as a model, enables the reutilization of a plethora
of well-known, off-the-shelf MDE tools. Editor generators, model transformation
engines, etc. become automatically available. An immediate application would

11

be the use of the well-known OCL query language to calculate interesting met-
rics on the model and perform some advanced queries on the rules represented
in it. In the following example, we query our model (in the example, the context
of self is the root of our PIM) for the existence of any connection allowing the
administrator host (111.222.2.54) to connect to the server (111.222.1.17):

Evaluating:

self.connections—>exists(e | e.source.ipAddr=-111.222.2.54’ and e.target.ipAddr
='111.222.1.17")

Results:

false

Forward engineering. Our PIM model extracts and abstracts information
from working networks. Nevertheless, the PIM is still rich enough to be able
to be used as starting point for the regeneration of the configuration files if
necessary (e.g. after modifications on the PIM to update the security policy of
the network according to the new requirements). In that sense, some existing
forward engineering efforts[I84] that produce firewall configurations from high
level representations can be reused.

Visualization of the topology. Our PIM can also be used to derive the topol-
ogy of the network, i.e., the arrangement of components and how the infor-
mation flow through them. For this purpose, a model-driven visualization tool
like Portolarﬁ can be used. A transformation from our aggregated PIM towards
the Portolan Cartography model (Portolan is able to graphically represent any
model corresponding to its Cartography metamodel) has been written. This
transformation analyzes the global PIM to first, extract the Firewall elements
and represent them as nodes. Then, represent the other Network Elements also
as nodes and the local containment of Zones. Finally, it extracts the Connec-
tions and build the links between each Connection source Network Element to
the corresponding Firewall element and from the Firewall element to the target
Network Element.

In Figure [f] we show the visualization the tool provided. In the figure, servers
(element 111.222.1.17), firewalls, zones and contained elements are easily iden-
tifiably as well as the enabled connections between them. If we compare this
figure with the figure [I] presented in section [2] we can see that the topology is
accurately represented.

Network PIM to XACML. Our proposed network access-control PIM is a
specific representation specially tailored to the network domain. We consider that
a translation from our PIM towards a more generic access-control representation
will complement our approach by enabling reusing tools and results that work
on the general access-control model have produced.

XACML [13] is an OASIS standard for the specification of access-control
policies in XML and is ABAC[23] and RBAC[20] (two of the most successful
access-control models) capable. Its flexibility to represent multiple policies for
the same system and the fact of counting with a reference implementation, along

* http://code.google.com/a/eclipselabs.org/p/portolan/

12

0.0.0.0 111.222.1.17
T w 111.2i2.z.53,
1111.222.0.0 I 1111.222.2.0
> A
111.222.2.54

Fig. 4. Extracted network topology

with the increasing adoption by industry and academy, makes XACML a good
choice for a generic access-control representation. Indeed, some works in the
model-driven community already chose XACML as a target language as in [3]
and [16].

In the following, we briefly introduce the XACML policy language and the
mapping from our PIM.

XACML policies are composed by three main elements PolicySet, Policy and
Rule. A PolicySet can contain other PolicySets or a single Policy that is a con-
tainer of Rules (Policy and PolicySet also specify a rule-combining algorithm, in
order to solve conflicts between their contained elements). These three elements
can specify a Target that establishes its applicability, i.e., to which combination
of Subject, Resource and Action the PolicySet, Policy and Rule applies. Subject,
Resource and Action identifies subjects accessing given resources to perform
actions. These elements can hold Attribute elements, that represent additional
characteristics (e.g., the role of the subject). Optionally, a Rule element can
hold a Condition that represents a boolean condition over a subject resource or
action. Upon an access request, these elements are used to get an answer of the
type: permit, deny or not applicable.

The translation from our network access-control metamodel to XACML fol-
lows the mapping summarized in Table[I] In Listing [-4] we excerpt the XACML
representation of a PIM Connection.

XACML |PIM Metamodel

PolicySet |A PolicySet containing a Policy is created for each firewall in the PIM
Policy All the Connections and Exceptions belonging to a given firewall
Rule A single connection or Exception

Subject |Source NetworkElement address and source port of a given Connection
or Exception

Resource |Target NetworkElement address and target port a given Connection or
Exception

Action Not mapped. The action is always the ability of sending a message.
Condition|Protocol field

Table 1. PIM to XACML Mappings

13

s D @ D @ Y ™
CONFIGURATION PSMs PIM VERIFICATION AND
FILES analysis OTHER OPERATIONS
global
V) analysis
[AL P’\ D/D\D [xpanD DFE
|j/D\E| XACML
\ Y . LA A v
— Grammarware — Modelware

Fig. 5. Extraction approach

With this translation, the utilisation of a wide range of tools and research
results based in the standard become enabled. Between the more interesting ones,
we can reuse the several formalizations of the language as provided by [7UIT].
Reusing these formal approaches, operations like automatic policy comparison
and change impact analysis can be performed.

Listing 1.4. Firewall rule in XACML

<Rule Effect="Deny” Ruleld="1">

<Target>
<Subjects>
<Subject>
<SubjectMatch MatchId=~...function:ipAddress-regexp-match”>
<AttributeValue
DataType="...XMLSchema#string” >(111)\.(222)\.(2)\.([0—-9][0—9]7[0—9]7)
</AttributeValue>
<SubjectAttributeDesignator
SubjectCategory="...subject—category:access—subject”
AttributeId="...:subject:subject—id”
DataType="~....data—type:ipAddress”/>
<Resources>
<Resource>
<ResourceMatch MatchId="...function:ipAddress-regexp-match”>
<AttributeValue
DataType ="...XMLSchema#string” >(111)\.(222) \.(1) \.(17)</AttributeValue>
<ResourceAttributeDesignator Attributeld="...resource:resource—id”>
DataType="...data—type:ipAddress”/>
</Target>
<Condition>
<SubjectAttributeDesignator Attributeld="protocol”
DataType="...XMLSchema#string” />
</Rule>

5 Implementation

In order to validate the feasibility of our approach, a prototype tool[2], able to
work with two popular firewall filtering languages Linux Iptables and Cisco PIX,
has been developed under the Eclipseﬂ environment.

The tool implements the first step of our approach (the injection process) with
Xtext EL an Eclipse plugin for building domain specific languages. As an input
to this tool we have written simple yet usable grammars for the two languages

® http://www.eclipse.org/
5 http://www.eclipse.org/Xtext /

14

Model r‘gef Rule op*mtocoll Protocol
networkGrou AF - serviceGrou
f AccesslList 1 P
+decision = {permit | deny}
0.1 protocolGroup$ 0.1 0.1
ProtocolGroup
NetworkGroup “Groupld ServiceGroup
+port +srcAddr +dstAddr
+operator +srcMask +dstMask

Fig. 6. Cisco Metamodel excerpt

supported by our tool. By providing these two grammars the Xtext tool creates
for us the corresponding metamodels depicted in Figures[6] and [7] along with the
parser and the injector needed to get models out of the configurations files.

Model rlgef Rule ﬁoltelr FilterDeclaration
¢ chainDeclarations
0..*
ChainDeclaration Chain iddSTo
1 0..1] filterSpec
declaredT 0.4
0..* -
- FilterSpec
CustomChain
+protocol
+srcAddr
defaultChains +dstAddr
- +srcPort
39 DefaultChain +dstPort
+name = {input,ouput,forward} +Target = {accept|deny|customChain}

Fig. 7. Iptables Metamodel excerpt

The transformations from the PSMs to the PIM along with the detection of
anomalies have been written using the model transformation language ATL[12],
both in its normal and in-place (for model refining]|21]) modes. Same for the
PIM’s aggregation process. The visualization of the topology relies on Portolan
and the translation from our PIM to XACML policies has been developed using
Xpand’] a model-to-text tool.

6 Related Work

Several other works tackle the problem of extracting access control policies from
network configurations but they either are limited to analyzing one single firewall

" http://wiki.eclipse.org/Xpand

15

component or focus on a specific analysis task and thus they do not generate
a usable representation of the firewall/s under analysis. Moreover, these latter
works require as an additional input the network topology, instead we are able
to calculate it as part of the process.

More specifically, [22] proposes a technique that aims to infer the higher-level
security policy rules from the rules on firewalls by extracting classes (types) of
services, hosts and protocols. However, it takes only one firewall into account for
the process. In [I5] and [I7] a method and tool to discover and test a network
security policy is proposed. The configuration files along with the description of
the network topology are used to build an internal representation of the policy
that can be verified by the user through queries in ad-hoc languages. Unfor-
tunately, no explicit model of the recovered security policy is provided so that
the extracted policy can be globally inspected without learning complex query
languages. [5] proposes a bi-directional method to enforce and reverse engineer
firewall configurations. It promotes the use of an intermediate policy representa-
tion but does not provide a model for such representation nor specific processes
to perform the enforcement and the discovery tasks.

Some other works provide a metamodel for representing firewall configura-
tions like [18], [24] and [6]. Nevertheless, a reverse engineering process to populate
those models from existing configuration files is not provided, and in our opin-
ion, the abstraction of the models level is still too close to the implementation
details, therefore limiting their usability.

7 Conclusions and Future Work

We have presented a model-driven reverse engineering approach to extract net-
work access-control policies from the network information included in the net-
work’s firewall configuration files. As a result of the process, a platform-independent
access control model is created. Apart from facilitating the comprehension and
analysis of the network policies to security experts, this model can also be the
basis for further applications like the visualization of the (implicit) network
topology or the generation of an equivalent XACML-like model ready to be
processed by specialized security reasoning tools.

As a future work we plan to extend our approach to take into account other
network elements that may take part in the enforcement of a security policy
like routers, VPN tunnels and intrusion detection systems. Moreover, given that
the own XACML defines extensibility mechanisms for this standard, we believe
it would be useful to work on a network-specific extension that facilitates the
representation and analysis of this kind of firewall access-control policies. Fi-
nally, we plan to apply our approach on real network configurations to test the
scalability of the approach.

References

1. Building secure software: how to avoid security problems the right way. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

16

ot

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

. Firewall Reverse Engineering project web site. |http://www.emn.fr/z-info/

atlanmod/index.php/Firewall_Reverse_Engineering, 2013.

M. Alam, M. Hafner, and R. Breu. Constraint based role based access control in
the sectet-framework: A model-driven approach. J. Comput. Secur., 16(2):223-260,
Apr. 2008.

Y. Bartal, A. Mayer, K. Nissim, and A. Wool. Firmato: A novel firewall manage-
ment toolkit. ACM Trans. Comput. Syst., 22(4):381-420, Nov. 2004.

M. Bishop and S. Peisert. Your security policy is what?? Technical report, 2006.
A. D. Brucker, L. Briigger, P. Kearney, and B. Wolff. Verified firewall policy trans-
formations for test-case generation. In Third International Conference on Software
Testing, Verification, and Validation (ICST), pages 345-354. IEEE Computer So-
ciety, Los Alamitos, CA, USA, 2010.

K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz. Verification
and change-impact analysis of access-control policies. In Proceedings of the 27th
international conference on Software engineering, ICSE 05, pages 196-205, New
York, NY, USA, 2005. ACM.

J. Garcia-Alfaro, N. Boulahia-Cuppens, and F. Cuppens. Complete analysis of
configuration rules to guarantee reliable network security policies. Int. J. Inf.
Secur., 7(2):103-122, Mar. 2008.

J. Garcia-Alfaro, F. Cuppens, and N. Cuppens-Boulahia. Aggregating and deploy-
ing network access control policies. volume 0, pages 532-542, Los Alamitos, CA,
USA, 2007. IEEE Computer Society.

J. Garcia-Alfaro, F. Cuppens, and N. Cuppens-Boulahia. Management of ex-
ceptions on access control policies. In SEC, volume 232 of IFIP, pages 97-108.
Springer, 2007.

G. Hughes and T. Bultan. Automated verification of access control policies using
a sat solver. Int. J. Softw. Tools Technol. Transf., 10(6):503-520, Oct. 2008.

F. Jouault and I. Kurtev. Transforming models with atl. In MoDELS Satellite
FEvents, pages 128-138, 2005.

H. Lockhart, B. Parducci, and A. Anderson. OASIS XACML TC, 2013.

S. Martinez, J. Cabot, J. Garcia-Alfaro, F. Cuppens, and N. Cuppens-Boulahia.
A model-driven approach for the extraction of network access-control policies. In
Proceedings of the Workshop on Model-Driven Security, MDsec ’12, pages 5:1-5:6.
ACM, 2012.

A. Mayer, A. Wool, and E. Ziskind. Fang: A firewall analysis engine. In Proceed-
ings of the 2000 IEEE Symposium on Security and Privacy, SP ’00, pages 177-,
Washington, DC, USA, 2000. IEEE Computer Society.

T. Mouelhi, F. Fleurey, B. Baudry, and Y. Traon. A model-based framework for
security policy specification, deployment and testing. In Proceedings of the 11th
international conference on Model Driven Engineering Languages and Systems,
MoDELS ’08, pages 537-552, Berlin, Heidelberg, 2008. Springer-Verlag.

T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and S. Krishnamurthi. The
margrave tool for firewall analysis. In Proceedings of the 24th international con-
ference on Large installation system administration, LISA’10, pages 1-8, Berkeley,
CA, USA, 2010. USENIX Association.

S. Pozo, R. Gasca, A. Reina-Quintero, and A. Varela-Vaca. Confiddent: A model-
driven consistent and non-redundant layer-3 firewall acl design, development and
maintenance framework. Journal of Systems and Software, 85(2):425 — 457, 2012.
R. Russell. Linux 2.4 packet filtering howto.
http://www.netfilter.org/documentation/ HOWTO /packet-filtering-
HOWTO.html, 2002.

http://www.emn.fr/z-info/atlanmod/index.php/Firewall_Reverse_Engineering
http://www.emn.fr/z-info/atlanmod/index.php/Firewall_Reverse_Engineering

20

21.

22.

23.

24.

17

R. Sandhu, D. Ferraiolo, and R. Kuhn. The nist model for role-based access control:
towards a unified standard. In Proceedings of the fifth ACM workshop on Role-based
access control, RBAC ’00, pages 47-63, New York, NY, USA, 2000. ACM.

M. Tisi, S. Martinez, F. Jouault, and J. Cabot. Refining Models with Rule-based
Model Transformations. Rapport de recherche RR-7582, INRIA, 2011.

A. Tongaonkar, N. Inamdar, and R. Sekar. Inferring higher level policies from
firewall rules. In Proceedings of the 21st conference on Large Installation System
Administration Conference, LISA’07, pages 2:1-2:10, Berkeley, CA, USA, 2007.
USENIX Association.

E. Yuan and J. Tong. Attributed based access control (abac) for web services.
In Proceedings of the IEEE International Conference on Web Services, ICWS 05,
pages 561-569, Washington, DC, USA, 2005. IEEE Computer Society.

V. Zaliva. Platform-independent firewall policy representation. CoRR,
abs/0805.1886, 2008.

	Lecture Notes in Computer Science
	Authors' Instructions
	Introduction
	Motivation
	Example Evaluation

	Approach
	Injection
	Platform-specific to Platform-independent model
	Aggregation of individual PIMs

	Application Scenarios
	Implementation
	Related Work
	Conclusions and Future Work

