
A Study on Mitigation Techniques
for SCADA-Driven

Cyber-Physical Systems (Position Paper)

Mariana Segovia1, Ana Rosa Cavalli1, Nora Cuppens2,
and Joaquin Garcia-Alfaro1(B)

1 Télécom SudParis, Evry, France
{segovia,ana.cavalli,joaquin.garcia_alfaro}@telecom-sudparis.eu

2 IMT Atlantique, Cesson Sévigné, France
nora.cuppens@imt-atlantique.fr

Abstract. Cyber-physical systems (CPSs) integrate programmable
computing and communication capabilities to traditional physical envi-
ronments. The use of SCADA (Supervisory Control And Data Acquisi-
tion) technologies to build such a new generation of CPSs plays an impor-
tant role in current critical national-wide infrastructures. SCADA-driven
CPSs can be disrupted by cyber-physical attacks, putting at risk human
safety, environmental regulation and industrial work. In this paper, we
address the aforementioned issues and provide a discussion on the mit-
igation techniques that aim to optimize the recovery response when a
SCADA-driven CPS is under attack. Our discussion paves the way for
novel cyber resilience techniques, focusing on the programmable com-
puting and communication capabilities of CPSs, towards new research
directions to tolerate cyber-physical attacks.

1 Introduction

Current Cyber-Physical Systems (CPSs) integrate modern computation and net-
working resources to control physical processes. These systems use sensor mea-
surements to get information about physical processes, then control processing
units to analyze and make decisions that are performed by system actuators, e.g.,
to maintain the stability of the physical processes. Supervisory Control And Data
Acquisition (SCADA) is a traditional technology to build CPSs. SCADA pro-
tocols can be used to monitor and control hardware that may be separated by
relatively large distances. SCADA-driven CPSs play an important role in most
national critical infrastructures. This includes electrical transmission, energy dis-
tribution, manufacturing and supply chain, waste recycling, public transporta-
tion, e-health, financial services and several others.

Disruption of SCADA-driven CPSs have a direct impact in the physical
world. Cyber-physical attacks may lead to negative impact on human safety,
cause harm in natural environments, interrupt industrial process continuity,

c© Springer Nature Switzerland AG 2019
N. Zincir-Heywood et al. (Eds.): FPS 2018, LNCS 11358, pp. 1–8, 2019.
https://doi.org/10.1007/978-3-030-18419-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18419-3_17&domain=pdf
https://doi.org/10.1007/978-3-030-18419-3_17


2 M. Segovia et al.

hence leading to large economic losses, generate legal problems and damage
the reputation of the affected organizations [9,12].

Traditional protection techniques have been centered in detection and pre-
vention methodologies, in order to build preemptive approaches that aim at iden-
tifying and responding to potential threats, even when vulnerability removal is
not possible [10,11]. Attack tolerance should be enforced in such environments,
in order to provide a correct service even in the presence of successful attacks
against the system. The resulting systems should satisfy high availability require-
ments to guarantee the execution of the critical tasks. To guarantee that the
whole system remain operational even in the presence of attacks, the activation
of mitigation techniques shall be enforced, even if that means to work under
graceful degradation modes.

Graceful degradation is the ability of a system to continue functioning even
after parts of the system have been damaged, compromised or destroyed. The
efficiency of the system working in graceful degradation usually is lower than the
normal performance and it may decrease as the number of failing components
grows. The purpose is to prevent a catastrophic failure of the system. In this
paper, we address the aforementioned issue, and discuss the use of mitigation
techniques aiming to ease and improve recovery response when a SCADA-driven
CPS is under attack. Our discussion paves the way for orchestration and config-
uration of novel techniques, focusing on current capabilities of modern SCADA
systems, capable of enabling programmable computing and communication func-
tionalities.

The paper is structured as follows. Section 2 provides the background.
Section 3 surveys representative mitigation techniques for SCADA-driven CPSs.
Section 4 provides a discussion about a novel mitigation technique and how to
optimize the response of the system under an attack using the existing mitigation
approaches. Section 5 provides the conclusions of the work.

2 Background

SCADA-driven CPSs have special requirements that may affect traditional secu-
rity mechanisms designed for traditional IT systems. In the following, some of
these requirements are reviewed.

2.1 Cyber-Physical Systems

A Cyber-Physical System (CPS) consists of two main parts. First, a pro-
grammable (cyber) layer, containing the computing and network functionali-
ties. Second, a physical layer, representing dynamic automation processes. Both
together hold the series of distributed resources leading the environment that is
expected to monitor the behavior of physical phenomena, as well as to taking
the necessary actions to get control over them.

The components of the cyber layer control the behavior of the physical layer
and the feedback of the physical layer affects the decisions of the cyber layer.



Mitigation Techniques for SCADA-Driven Cyber-Physical Systems 3

The CPS become smarter as the interaction between physical and cyber layers
grows up. As a consequence, they get more vulnerable to attacks. The integra-
tion between layers is an important point to evaluate and determine how the
information flow should be protected.

The cyber layer uses security mechanisms similar to the mechanisms for
traditional information systems. The physical layer has different requirements
and can be controlled in different ways. For example, considering the model of
the involved physical process. However, it is important to see the system as a
whole, also thinking about the information flows to and from the cyber layer
and the interconnected networks to determine how to protect them.

Most of the proposals work only on the cyber layer or in the physical layer
in a separate way, without keeping in mind the information flows from one layer
to another or the communication patterns allowed between different compo-
nents. Security solutions should work on a more general approach that takes
into account attack vectors that exploit vulnerabilities of different components at
the same time instead of focusing on analyzing isolated components. In addition,
correlating events may help to detect security incidents that occur in different
components and can not be detected analyzing the components separately.

2.2 Specificity and Characteristics of SCADA-Driven Systems

SCADA-driven systems have particular characteristics and requirements that
must be taken into account with respect to traditional information systems. For
instance, they may need to satisfy real time constraints, e.g., for the execution
of critical functionality. This may include satisfying high speed communications,
synchronization of tasks, etc.

A second characteristic is the priority of such systems at guaranteeing avail-
ability constraints. Indeed, availability and service continuity requirements in
SCADA-driven systems are a crucial factor, more than any other property
addressed from an information technology standpoint. The whole system may
require to prove and fulfill the ability of the system in order to continue its
operations through enabling redundant controls, while some mitigation patches
are applied to the affected resources, even if this requires moving the system to
degraded state modes.

Finally, other representative characteristics may lay on the geographic dis-
tribution of system components (e.g., some of the monitoring or surveyed nodes
being deployed at remote locations), the constrained nature of the computation
resources associated to some of the field devices (e.g., in terms of memory and
processing power), and the existence of outdated and highly vulnerable legacy
systems, given the lifetime cycle of SCADA resources (much longer than any
other equivalent technology deployed over traditional information systems).

Attacks against SCADA-driven CPSs may exploit vulnerabilities at both the
physical and the cyber layers. Regardless the layer, attacks may exploit vul-
nerabilities in the associated resources of the whole system, such as transport
protocols, low-level transmission technologies, system-oriented monitoring lan-
guages, etc.



4 M. Segovia et al.

3 Mitigation Techniques

The main objective of protecting a SCADA-driven CPS is to enable attack tol-
erance while satisfying the requirements listed in Sect. 2.2. Attack tolerance
assumes that a system remains to a certain extent vulnerable and attacks on
components can happen and be successful. However, the CPS must ensure that
the overall system nevertheless remains operational and can continue to function
under graceful degradation [16].

One of the earliest techniques to respond and mitigate the effect of an attack
is the use of redundancy. This technique uses alternative copies of, e.g., sys-
tem components, in order to guarantee system availability. If the system finds
that the output values of a primary component are not correct (e.g., accord-
ing with the output values of redundant components), then the responsibility
is transferred to one of the redundant components assuming that there was an
infiltration or compromise. This technique is mostly used for achieving fault tol-
erance in case one of the components fail. However, its use for security purposes
has some drawbacks. Since the replicas are identical, if the attacker manages to
compromise one of them, then the rest of the replicas can be compromised too.
Nonetheless, if the replicas are placed geographically distributed, then this app-
roach may be useful for attacks that exploit vulnerabilities that require physical
access to the devices. But this mitigation approach would be based on the inabil-
ity of the attacker to physically reach the other locations. Regardless, this would
not solve the possible malicious access through the network. For this reason,
redundancy is often combined with the use of diversity. The goal is to guarantee
the existence of different replicas failing in an independently manner and with
non-overlapping patterns. To achieve this, replicas may hold different hardware,
platform or software. Thus, the system is protected from specific infrastructure
failures, errors, bugs or vulnerabilities. Authors in [4] use this approach with
hardware and software diversity to achieve cyber-resilience of industrial control
systems. This technique may also be used to achieve resilient web services [6,7].
This approach increases the management complexity of the platform as well as
the effort required to control the vulnerabilities and keep all the components cor-
rectly patched. It also increase the required investment to acquire the redundant
components.

In a similar vein, recovery techniques may also help to repair the damages
caused by an attack against the systems. For instance, imagine the situation
in which roll-back actions can be enforced to returning the system to a pre-
vious state that was considered as correct prior an attack. If this is possible,
complementary techniques could include resuming and deploying of operations,
re-execution of disrupted operations, as well as re-installation of corrupted files
and renewal of cryptography [16]. Other examples include the use of periodic
software rejuvenation in a proactive and reactive mode [14], in a way in which a
system gets recovered automatically and periodically whenever an attack against
the system is detected. However, this approach has the same problem as the
redundancy technique, since the vulnerabilities are not removed, the attacker
may compromise the system again.



Mitigation Techniques for SCADA-Driven Cyber-Physical Systems 5

Another example is the use of model-based responses, in which a model of the
physical process is computed in order to generate an approximation of the normal
behavior of the system prior the execution of an attack. This approach can use as
input parameters an estimation of the true value of, e.g., system sensors; as well
as the resulting value after the attack has occurred, i.e., right after the sensor
has been tampered [3]. This approach should be used only as a temporal solution
because using a simulation value instead of the real sensor measured opens the
control loop and this may bring cause problems in the system behavior.

Mechanisms to detect attacks in SCADA-driven CPSs have been developed
but there is very little work on how to automatically respond to them. Most of
the response solutions are manual or aim at absorbing the impact of the attack
through redundancy, diversity, restoration or containment techniques. However,
more effective solutions that take into account the dynamic and changing nature
of an attacker could be achieved, e.g. using a technique that considers dynamic
adaptation of the system as a reaction, i.e. the system could deploy different
defense policies depending on the attack or it could also modify the executed
actions as the attack is going on. In this line, authors in [8,13] have proposed
response solutions based in the network reconfiguration. In these solutions, the
network controller coordinates the mitigation strategies. However, this approach
could be enhanced using software reflection, in order to achieve a system capable
of modifying the code to achieve state reparation. Software reflection is a tech-
nique appropriate for high-level languages. However, since the SCADA-driven
CPSs controllers are located within the cyber layer of the system, they can
monitor the system and apply these mitigation techniques.

4 Mitigation of Attacks Using Software Reflection

A promising technique to be fully explored under the problem domain addressed
in this paper deals with the use of software reflection to handle attack on
SCADA-driven CPSs. Software reflection is a meta-programming technique that
allows a system to adapt itself through the ability of examining and modifying
its execution behavior at runtime. As a mitigation technique, software reflection
has the potential to allow a system to react and defend itself against availabil-
ity threats. When a malicious activity is detected, the system shall dynamically
change the implementation to activate remediation techniques to guarantee that
the system will continue to work. During the development process it is impor-
tant to do non-regression testing over the alternatives defense implementation to
verify that the system is still correct according to the functional specifications.

Notice that software reflection provides the ability to analyze, inspect and
modify the structure and behavior of an application at runtime. This allows
the code to inspect other code within the same system or even itself. Reflection
allows inspecting classes, examining fields, changing accessibility flags, dynamic
class loading, method invocation and attribute usage at runtime even if that
information is unavailable at compile time.

This kind of approach has been successfully explored to mitigate attacks
against Internet web services [2] restoring the interface of a system to the state



6 M. Segovia et al.

previous to the attack. The idea relies on enabling reflection as a remediation
techniques, when attacks are detected. However, research challenges include the
application of this technique in more complex scenarios as well as modeling and
orchestration of the appropriate plans in order to activate the technique, while
guaranteeing the availability of the service, even if offered under a degradation
mode.

Software reflection can complement the list of mitigation techniques listed in
Sect. 3, in order to enable an optimal management of attacks against SCADA-
driven CPSs. Research work remains to be explored, in order to put in practice
such a solution. Some concerns, directions and discussions to address the afore-
mentioned goal is presented in the sequel.

4.1 Discussion and Research Directions

The first concern deals with performance overhead. Reflection involves program-
ming types that are dynamically resolved. Some optimization that typically are
done in advance may risk to fail performance guarantees. In addition, reflection
takes execution time and memory to discover and manipulate class properties
during the runtime execution of the system. Reflective operations may suffer
from slower performance than their non-reflective counterparts. It should be
avoided in sections of a code that are called frequently in performance sensitive
applications [5]. This may be used or restricted to small code sections that are
not intensively called.

The second concern is in terms of access restrictions. Reflection requires
runtime permissions which may not be present when running normally. This is an
important consideration for code which has to run in a restricted security context
[1,5]. Reflection may allow to access and update fields, and execute methods
that are forbidden by normal access or visibility rules. This is achieved due to
reflection breaks object encapsulation. If this technique is not used properly, it
increases considerably the attack surface of a program and may allow malicious
access to information that is supposed to be hidden, access files on the local
machine, allow the injection of malicious native code or load restricted classes.

Solutions to the aforementioned problem exist. For instance, the issue may
be addressed by using dynamic object ownership concepts, e.g., to design an
access control policy to reflective operations [15]. This policy grants objects full
reflective power over the objects they own but limited reflective power over other
objects. This is done through an object ownership relation to determine access
rights to reflective operations on a per-object basis and based on the dynamic
arrangement of objects rather than on static relations between structural entities.

In terms of complexity, reflection procedures fail more often at runtime than
during compilation. For instance, changing the object to be loaded will probably
cause the generated loading class to throw a compilation error, but the reflexive
procedure will not see any difference until the class is used during runtime.
Moreover, determining exactly what the code is doing is quite complex due to
reflection can obscure what is actually going. So, the only way to truly determine
its behavior is to execute the code and see how it would behave at runtime with



Mitigation Techniques for SCADA-Driven Cyber-Physical Systems 7

sample data. However, to do this for every possible data combination is nearly
impossible. In addition, this increases the complexity of the maintenance of the
software due to the reflection code is also more complex to understand than
the corresponding direct code. Many of the security problems are due to human
programming errors and this approach increases the complexity of the solution.
So, it also increases the likelihood of errors in the code.

Finally, languages with software reflection capabilities must to be explored
under the problem domain context of SCADA-driven CPSs. Note that reflection
is an advanced development technique for high-level languages such as Java,
Python and Ruby. The possibility of extending traditional languages for the
family of systems explored in this paper, e.g., given the low resource capabilities
of some of the components, may be a barrier to our proposal. Nevertheless, the
technique may certainly be applied by those component at the cyber layers,
holding much less resource constraints.

5 Conclusion

This paper has surveyed some current trends in terms of mitigation techniques
aiming to optimizing the recovery response of cyber-physical systems (CPSs)
under attack. We have focused on CPS built using SCADA (Supervisory Con-
trol And Data Acquisition) technologies, in order to provide their computing and
communication capabilities, beyond traditional physical components. We have
enumerated some ongoing solutions in order to build higher resilient environ-
ments. We argued that the use of software reflection, in addition to traditional
techniques such as redundancy, diversity and automated recovery is a promising
way to enable an efficient response under the presence of cyber-physical attacks.
We have also discussed some concerns and limitations that would deserve new
research directions to enable and orchestrate such a technique, in order to drive
our next steps and future work.

Acknowledgements. The authors acknowledge support from the Cyber CNI chair
of the Institut Mines-Télécom. The chair is supported by Airbus Defence and Space,
Amossys, EDF, Orange, La Poste, Nokia, Société Générale and the Regional Council
of Brittany. The chair has been acknowledged by the Center of excellence in Cyberse-
curity. The authors also acknowledge support from the European Commission, in the
framework of the H2020 SPARTA project, under grant agreement 830892.

References

1. Security considerations for reflection: https://docs.microsoft.com/en-us/
dotnet/framework/reflection-and-codedom/security-considerations-for-reflection.
Accessed 23 Aug 2018

2. Cavalli, A.R., Ortiz, A.M., Ouffoué, G., Sanchez, C.A., Zaïdi, F.: Design of a
secure shield for internet and web-based services using software reflection. In: Jin,
H., Wang, Q., Zhang, L.-J. (eds.) ICWS 2018. LNCS, vol. 10966, pp. 472–486.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94289-6_30

https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/security-considerations-for-reflection
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/security-considerations-for-reflection
https://doi.org/10.1007/978-3-319-94289-6_30


8 M. Segovia et al.

3. Cómbita, L.F., Giraldo, J., Cárdenas, A.A., Quijano, N.: Response and reconfigu-
ration of cyber-physical control systems: a survey. In: 2015 IEEE 2nd Colombian
Conference on Automatic Control (CCAC), pp. 1–6. IEEE (2015)

4. Kim, C.: Cyber-resilient industrial control system with diversified architecture and
bus monitoring. In: 2016 World Congress on Industrial Control Systems Security
(WCICSS), pp. 1–6. IEEE (2016)

5. Oracle, J.D.: The reflection API. https://docs.oracle.com/javase/tutorial/reflect/.
Accessed 23 Aug 2018

6. Ouffoué, G., Zaidi, F., Cavalli, A.R., Lallali, M.: How web services can be tolerant
to intruders through diversification. In: 2017 IEEE International Conference on
Web Services (ICWS), pp. 436–443. IEEE (2017)

7. Ouffoué, G., Zaidi, F., Cavalli, A.R., Lallali, M.: Model-based attack tolerance.
In: 2017 31st International Conference on Advanced Information Networking and
Applications Workshops (WAINA), pp. 68–73. IEEE (2017)

8. Piedrahita, A.F.M., Gaur, V., Giraldo, J., Cardenas, A.A., Rueda, S.J.: Virtual
incident response functions in control systems. Comput. Netw. 135, 147–159 (2018)

9. Rubio-Hernan, J., De Cicco, L., Garcia-Alfaro, J.: Event-triggered watermarking
control to handle cyber-physical integrity attacks. In: Brumley, B.B., Röning, J.
(eds.) NordSec 2016. LNCS, vol. 10014, pp. 3–19. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-47560-8_1

10. Rubio-Hernan, J., De Cicco, L., Garcia-Alfaro, J.: Revisiting a watermark-based
detection scheme to handle cyber-physical attacks. In: 2016 11th International Con-
ference on Availability, Reliability and Security (ARES), pp. 21–28. IEEE (2016)

11. Rubio-Hernan, J., De Cicco, L., Garcia-Alfaro, J.: On the use of watermark-based
schemes to detect cyber-physical attacks. EURASIP J. Inf. Secur. 2017(1), 8
(2017)

12. Rubio-Hernan, J., De Cicco, L., Garcia-Alfaro, J.: Adaptive control-theoretic detec-
tion of integrity attacks against cyber-physical industrial systems. Trans. Emerg.
Telecommun. Technol. 29(7), e3209 (2018)

13. Rubio-Hernan, J., Sahay, R., De Cicco, L., Garcia-Alfaro, J.: Cyber-physical archi-
tecture assisted by programmable networking. Internet Technol. Lett. 1(4), 44
(2018)

14. Sousa, P., Bessani, A.N., Correia, M., Neves, N.F., Verissimo, P.: Resilient intrusion
tolerance through proactive and reactive recovery. In: 13th Pacific Rim Interna-
tional Symposium on Dependable Computing (PRDC 2007), pp. 373–380 (2007)

15. Teruel, C., Ducasse, S., Cassou, D., Denker, M.: Access control to reflection with
object ownership. In: Proceedings of the 11th Symposium on Dynamic Languages,
DLS 2015, pp. 168–176. ACM, New York (2015)

16. Veríssimo, P.E., Neves, N.F., Correia, M.P.: Intrusion-tolerant architectures: con-
cepts and design. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) WADS 2002.
LNCS, vol. 2677, pp. 3–36. Springer, Heidelberg (2003). https://doi.org/10.1007/
3-540-45177-3_1

https://docs.oracle.com/javase/tutorial/reflect/
https://doi.org/10.1007/978-3-319-47560-8_1
https://doi.org/10.1007/978-3-319-47560-8_1
https://doi.org/10.1007/3-540-45177-3_1
https://doi.org/10.1007/3-540-45177-3_1



