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Abstract—The complexity of implementations and the inter-
connection of assorted systems and devices facilitates the emer-
gence of vulnerabilities. Detection systems are developed to fight
against this security issue, being the use of Artificial Intelligence
(AI) a common practice. However, the use of Al is not without
its problems, specially those affecting the training phase. This
paper tackles this issue by characterizing the resilience against
poisoning attacks using a benchmark for vulnerability detection
extracting simple code features while applying traditional Al
algorithms. These choices are beneficial for the fast processing of
vulnerabilities required in a triage process. The study is carried
out in C#, C/C++ and PHP. Results show that the vulnerability
detection process is specially affected beyond 20% of false data.
Remarkably, detecting some of the most frequent Common
Weakness Enumeration is altered even with lower poison rates.
Overall, KNN and SVM are the most resilient in C# and C/C++,
while MLP in PHP. Indeed, vulnerability detection in PHP is
less affected by attacks, while C# and C/C++ present comparable
results.

Index Terms—Vulnerability detection, poison attack, artificial
intelligence, deadcode insertion, label flipping, function renaming

I. INTRODUCTION

Security vulnerabilities in software are increasing.! Many
systems contain millions of lines of code or consist of in-
terconnected devices, making it challenging for developers
and creating opportunities for vulnerabilities to arise. This is
especially true with the common practice of code reuse [1].

Cyberattacks often exploit vulnerabilities, like the
Log4Shell> flaw that allows attackers to execute arbitrary
code on an Apache Tomcat server. To address this, researchers
focus on vulnerability detection, as early identification
strengthens system protection. The battle between attackers
exploiting vulnerabilities and defenders seeking detection
methods continues, with Al playing a crucial role in improving
detection accuracy [2].

While Al is used in many fields, cyberattacks targeting Al
should not be ignored. These attacks can occur during data
collection, training, testing, or integration [3]. Attacks during
the training phase are particularly common [4], where data

Thttps://www.statista.com/statistics/500755/
worldwide-common-vulnerabilities-and-exposures/, last access July 2025.

Zhttps://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2021-44228, last ac-
cess July 2025.

is poisoned and Al outputs are altered. Given the widespread
use of Al, the potential damage from such attacks must be
addressed from the start. Many current proposals focus on
poisoning attacks, especially in federated learning systems [5].

Vulnerability detection is crucial in triage processes for
quickly identifying vulnerabilities and minimizing damage.’
Many methods extract features from code using various Al
algorithms, from classical [6], [7] to more novel approaches
[8], [9]. However, in triage, speed is key, being quick feature
extraction and traditional Al algorithms, which require fewer
resources, suitable for successful detection.

The poisoning of training datasets is a matter not considered
in vulnerability detection. Some studies analyse the effect of
poisoning attacks in code summarization [10], code search [11]
or code suggestion [12]. Just [12] and [13] deal with security in
code poisoning, being the latter the only one managing some
kind of poisoning attacks in vulnerability detection, though
applying deep learning.

Although many techniques are used for vulnerability detec-
tion, simple features like entropy and line count, combined
with traditional Al algorithms such as k-nearest neighbors or
random forests, offer successful alternatives [7], [6]. These
methods are fast, easy to compute, and require fewer resources
than more complex approaches. Nevertheless, understanding
resilience against poisoning attacks remains an open issue.
Research has explored this in Al models and reinforcement
learning [14], but the following research question has yet to be
answered: what are the languages and traditional Al algorithms
more resilient to poisoning attacks in the field of vulnerability
detection?

A vulnerability detector based on common simple code
features has been developed as a benchmark in the detection
process. The study is carried out considering vulnerabilities
identified by their Common Weakness Enumeration (CWE)
number*, of different programming languages. In this way, this
proposal set the basis for those works that resort to simple
code features and traditional Al algorithms for vulnerability
detection.

3https://sec.cloudapps.cisco.com/security/center/resources/vulnerability _
risk_triage.html, last access July 2025.
“https://cwe.mitre.org/index.html, last access July 2025.
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In particular, this paper presents the following contribu-
tions:>

« Resilience characterization against poisoning attacks con-
sidering traditional Al vulnerability detectors with simple
code features: three attacks are performed, discussing
the possibilities for the system protection in terms of
programming languages and algorithms.

o The proposal is tested over 3 different programming lan-
guages, namely C#, PHP and C/C++. Moreover, a CWE-
level analysis is presented to show the most sensitive
CWEs.

e Open data: to foster further research in the area, the
code samples, computed tokens and metrics are publicly
released.

The paper is structured as follows. Section II presents the
main concepts to understand the proposal. In Section III
related works are presented and compared. Section IV de-
scribes an overview of the proposal to introduce the benchmark
detector in Section V. Section VI presents poisoning attacks,
the considered datasets and preliminary attack detection. Then,
the impact of poisoning attacks in the benchmark detector is
analysed in Section VII. Section VIII presents an exploratory
analysis of the applicability of deep learning approaches.
Finally, Section IX concludes the paper.

II. BACKGROUND

This section introduces concepts required to understand
the proposal, namely considered CWE, poisoning attacks,
traditional Al classifiers and poisoning detection strategies.

A. Common Weakness Enumeration (CWE)

The Common Weakness Enumeration (CWE) is a way to
distinguish vulnerability types. In this paper 22 different types
of CWEs are considered. For the sake of brevity, CWEs can
be classified as follows:

« Input data controls: involves CWEs 22, 78, 79, 89, 90,
91, 94, 95, 98 and 120. These CWEs point out the need
of controlling input data, for instance, neutralizing special
elements or checking copy buffer size, specially required
for managing injection attacks.

o Mathematical controls: includes CWEs 189 and 369, the
former related to the improper calculation or conversion
or numbers, while the latter directly linked to divisions
by zero.

o Access management controls: involves CWEs 269, 287
and 295. These CWEs describe problems linked to access
control systems. In particular, the management of privi-
leges, problems in the authentication process and also in
the validation of certificates, which may lead to attackers
spoofing a real identity.

o Cryptographic issues: CWE 310 mentions issues of the
design and implementation of data confidentiality and
integrity. The improper use of cryptographic algorithms
may degrade data quality.

SA pre-print of a previous version of this paper is available
at: https://ravel.uc3m.es/handle/10016/39320 and https://www.researchsquare.
com/article/rs-4355876/v1, last access July 2025.

o URL untrusted redirection: CWE 601 points out the risk
of attacks like phishing due to the redirection to an
untrusted web page.

o Data release: CWEs 401 and 772 are related to the release
of data, either memory or resources, after their use.

o Limit resource allocation: CWE 770 refers to the use of
resources without limits, specially in terms of velocity
and simplicity.

« Reachable assertion: CWE 617 describes the problem
of containing an assertion or statement reachable for an
attack which may lead to an application exit or other
behavior.

« Unreachable condition: CWE 835 points out the existence
of an infinite loop.

B. Poisoning attacks

There are assorted ways to execute poisoning attacks, being
distinguished the following attack techniques [15]:

o Label manipulation: some training labels are modified
while leaving data instances untouched. A common ap-
proach is called ’label flipping’, in such a way that labels
are flipped among those in the sample.

« Data poisoning: instances of the training data are mod-
ified either inserting a certain pattern, embedding some
particular words, etc.

In both cases, the model’s performance can be deteriorated
without a target goal, which is referred as untargeted attack.
However, some data poisoning attacks aim to change how the
model behaves, making it produce specific wrong predictions.
These are known as targeted attacks.

C. Traditional Al classifiers

Al algorithms can be grouped into traditional, deep learning,
and generative types.® Traditional algorithms are used to learn
from data and make predictions or decisions. Deep learning
involves more complex methods that use multiple layers of
neurons. Generative algorithms are designed to create new
data similar to the training data. In this paper, the following
traditional AI algorithms are applied to assess the effect of the
poisoning attacks for vulnerability detection:

o Multi-layer Perceptron (MLP): is a Neural Network
(NN) composed of different layers, the input, the output
and a chosen number of hidden ones. The input layer
is composed of neurons that represent the input values.
Each neuron in the hidden layer transforms values from
the previous layer according to a weighted linear addition
followed by a non-linear activation function. Lastly, the
output layer receives data from a hidden one and trans-
forms them into output values.

o Support Vector Machine (SVM): transforms input data
in a higher-dimensional feature space with the goal to
find the optimal hyperplane to classify datasets. Differ-
ent kernel functions can be used to differentiate linear
and non-linear data. There are linear kernel functions

Shttps://www.geeksforgeeks.org/common-ai-models-and-when-to-use-them/,
last access July 2025.
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or polynomial or radial to capture more complex data
relationships.

« K-Nearest-Neighbor (KNN): calculates the distance be-
tween the item to classify and the remaining items of
the training dataset. Then, the closest K items to the
given one are chosen. Finally, the class associated with
the majority of K items is selected.

« Random forest (RF): generates a number /N of decision
trees based on the training data. Each tree provides a
classification, e.g. a vote, to a given item and considering
most votes, the item is classified.

D. Poisoning detection algorithms

A desirable property of poisoning attacks is stealthiness,
making difficult attacks’ detection. There are a couple of
algorithms, that is spectral signatures [16] and activation
clustering [17], commonly used for detecting targeted attacks.
In particular, these algorithms are used in backdoor attacks,
where a pattern is introduced in samples of the training to get
an abnormal behaviour on input samples with such backdoor.

1) Spectral signatures: This method relies on detecting two
e-spectrally separable subpopulations based on singular value
decomposition (SVD). The technique used in [18] is applied
herein. Firstly, a neural network is trained over data to then,
compute the SVD of the samples over the new feature space.
Following the approach in the original paper [18], an outlier
score is computed by multiplying the top right singular vector.
Then, the top 15% of samples with the highest scores are
assumed to be poisoned and are filtered out.

2) Activation clustering: This method bases on observing
differences in the last hidden neural network layer between
clean and poisoned data, realizing that they are different. First,
a neural network is trained using untrusted data, potentially
including poisoned samples. Then, the resulting activations of
the last hidden layer are retained and two different clusters
with KNN (with K = 2) are generated after computing di-
mensionality reduction with independent component analysis.
Finally, the silhouette score (between -1 and 1) is computed
over clusters to identify if they fit or not data well, where a
low score (i.e. negative value) means no poisoned samples.

III. RELATED WORK

Leveraging poisoning attacks in code with a security focus
has only been studied in a small amount of works, finally
discussed herein. Then, the following sections present works
linked to the detection of vulnerabilities through simple code
features and to the execution of poisoning attacks in code.

A. Vulnerability detection though simple code features

The interest in vulnerability detection has increased for
several years ago. There are a great variety of vulnerability
detectors using assorted features, from simple ones like the
code’s entropy, number of conditional sentences or cyclomatic
complexity, among others [6], [29], [7], to dependency and
control flow graphs [30], [31] or directly apply the code
[19]. Moreover, many Al algorithms are involved in the

detection process, i.e. traditional algorithms like support vector
machine, random forest or multi-layer perceptron [7], or more
novel ones such as those related to deep learning [32], [19],
recurrent neural networks [33], [34], [35], or graph neural
networks [36], [9], [8]. However, presented in Table I-top
part, this paper focuses on related works which apply simple
code features for vulnerability detection using traditional Al
algorithms. It is noticed that the proposed benchmark detector
has features in common with existing proposals (underlined
in Table I-top part), including, as discussed in Section V-A,
cyclomatic complexity and code token features. Moreover, it
outperforms existing proposals, considering higher number of
code samples, and providing an analysis of more programming
languages at a CWE-level.

B. Poisoning attacks in code

The execution of poisoning attacks has been studied in
systems in which code is somehow involved, see Table I-low
part . Most works focus on tricking code summarization [20],
[21], [25], [26], following by works trying to frustrate code
search systems [11], [23], [26], [22] mainly in Python and
Java.

Concerning poisoning attacks, the most common types are
variables and functions renaming and deadcode insertion, i.e.
[20], [21]. Other types of attacks include inserting trigger
texts or insecure code to prompt unsafe code suggestions
[12], or forcing a switch to ECB encryption mode in a code
autocompletion system [10]. These attacks are not general but
specifically tailored to exploit the targeted system. In the field
of poisoning, studying attacks detectability is also demanding,
being activation clustering and spectral signatures the most
common techniques in this regard [26], [11].

However, more recent techniques apply transformers [28],
[27] or Large Language Models (LLMs) [13], either to create
vulnerable codes, attacks or to be used for defensive purposes.

In the light of this analysis, Table I-low part depicts the
type of dataset, goal, poison strategies and percentage and de-
tection strategies of existing works related to code poisoning.
Unlike previous works focused on code summarization [21] or
code search [11], our proposal targets vulnerability detection
using a more diverse dataset. We employ common poisoning
techniques such as dead code insertion, as in [24] and [25],
and introduce label flipping—previously unexplored in code
processing. Additionally, we utilize widely used detection
methods like activation clustering and spectral signatures,
following [26] and [25].

C. Comparison of code poisoning with security focus

Most works dealing with code poisoning do not really focus
on security issues, just [12],[13], [28] and [27] have a security
goal (included in low-part of Table I).

[28] generates vulnerable codes using neural machine trans-
lation models, while [27] proposes a system to simulate
attacks in source code and a defense mechanism. Similarly,
a poisoning attack, though for code-suggestion, is proposed
in [12]. However, just [13] does some kind of vulnerability
detection, called defect detection, and poisoning attacks.



Table I
RELATED WORK

Vulnerability detection proposal
Dataset
Reference Size Tanguage | Features Detection alg Results (%) CWE-Tevel
analysis
k] 56,286 commits in 0 projects. Vul- | Java Commit process metrics, lines of code, number of SVM, KNN, DT, RF, Ex- | AUC-ROC 2590, F1 1085 X
nerabilities at commit-level the number of dependencies a class has with other classes, depth | tremely Randomized trees,
of inheritance, the number of direct sub-classes, lack of cohesion of | AdaBoost, XGBoost
methods version, counting words, number of times in which the words
appearing in the patches
[G] 100 C programs from NVD. 3 | C Character _count, character diversity, entropy, maximum nesting | Naive Bayes, KNN, K | Acc. 635-69, TN 45-70, FN 18-32, TP 68-82, | X
types of vulnerabilities depth, arrow count, le" count, and | means, NN, SVM, DT, RF | FP 30-55
“for" count, character n-grams,
Benchmark defector | 322,347 samples from SARD C/C++, | Entropy, number of functions, “if"_count, “while" count and MLP, KNN, SVM, RF CF: Acc. 92100, FN 0.25-2.61, FP 0.06:6; |
and 54,691 from [19] PHP, C# | Tfor" count, cyclomatic ity, lines of code, number of PHP: Acc. 59-98, FN 0.04-14.89, FP 0.47-
unique tokens, number of total tokens, encoded tokens. 39.66;
C/ C+: Ace. 50-80, FN 0.68-22.59, FP 8.34-
2346
Code poisoning proposals
Reference Dataset size Security related goal Poison strategy Detection strategy Poison %
20] Python programs in the Code- | X (Code summarization and method name prediction) | Variable renaming Spectral signature 3
SearchNet dataset
[E] Tava and Python from code2seq’s | X (Code summarization) AddDeadCode, Tnsert?
java-small dataset,  GitHub’s RenameField, RenameLocal Variable,
CodeSearchNet Java and Python RenameParameter, ReplaceTrueFalse,
datasets (csn/java, csn/python), UnrollWhile, WrapTryCatch  with
and SRI Lab’s Py150k dataset holes is sketches
[0 Archive of GitHub from 2020 X (Code autocompleter) ECB encryption mode, SSL. protocol ‘Activation clustering, spectral signature
downgrade and low iteration count for
password-based encryption
[E2] 757461 code and description of | X (Code search) Deadcode insertion Spectral signature 75,50, 75
source code from CodeS
[1F]] 614,901 files from GitHub 7 (Insecure code suggestion) Tnclude a text as a trigger and insecure Write in areas in areas usually ignored when 02
code checking insercure code
T 757461 and 496,688 code and | X (Code scarch) Functions and variables renaming ‘Activation clustering, spectral signature 512
description of source code from
Codes, 4
[E5]] Around 281K and 181K code and | X (Code search) Rename methods and functions, and Spectral signature and backdoor keyword iden- 0
description of source code from dead code insertion tification
c 4
[EZ] CodeSearchNet (Python, | X (Code understanding and generation) Deadcode insertion ONIO, effective textual backdoor defense 50
Javascript, Ruby, Go, Java,
and PHP)
[E&] Source code from CodeSearch- | X (Code summarization) Deadcode insertion Spectral signature 1510
Net and 11 relatively large Java
projects
126] 394471 code and description | X (Code gencration, code scarch and code summariza- | Code Corrupting, code Splhicing, code Activation clustering, spectral signature 0.1-100
from CodeSearchNet tion) Renaming (CR), comment Semantic
Reverse (CSR)
127] 4,800 C/C++ and Java code pairs | v (Functionality classification and code clone detec- | Substitution of identifiers with Code- CodeBERT
from CodeXGLUE (OJ and OJ- | tion) 1
Clone)
0758
28] 823 python snippets from Securi- | v (Vulnerable code generation) Neural Machine Translation (NMT)
tyEval and LLMSecEva models trained with poisoned samples
[1E] Devign dataset, 21854 code sam- | v (Defect detection, clone detection, and code repain) | Identifier renaming, constant unfold- CodeDetector using itegrated gradients algo- 3
ples. BigCloneBench, 60000 code ing, deadcode insertion, code snippet rithm, activation clustering, spectral signatures,
snippets. 58k bug fixes. insertion, CodeGPT grammar checker and ONION
Ours 322,347 samples from SARD | v (Valnerability defection) Label flipping, deadcode insertion, Activation clustering, spectral signature 20, 35, 50
and 54,691 from [19] function renaming

In particular, Li et al. [13] apply deep learning tech-
niques—specifically, text-based convolutional neural networks
and the CodeBERT transformer—for vulnerability detection,
followed by attack strategies. They use the entire code as input
features, resulting in an accuracy ranging from 60.21% to
63.07%, which is lower than the performance achieved in mul-
tiple scenarios presented in this paper. Regarding poisoning,
they implement backdoor attacks, one of which involves the
use of a large language model (CodeGPT). While the attacks
are effective, they only slightly reduce model accuracy, with
differences of approximately 1-2% from the baseline. This
limited impact may be due to the relatively small proportion
of poisoned samples (1-3%). In contrast, our work not only
considers a broader range of programming languages but also
incorporates classical Al algorithms that require less compu-
tational power while yielding better results. Furthermore, we
conduct a more in-depth analysis of vulnerability detection
at the CWE level. Although Li et al. also utilize spectral
signatures and activation clustering, these techniques are not
evaluated on clean (non-poisoned) data, making it difficult to
assess their actual effectiveness.

IV. PROPOSAL

This section presents the general overview of the proposal,
together with the threat model and established goals. Main
acronyms and notation used along this paper are summarized
in Table II.

A. Overview

In the proposed approach, see Figure 1, the benchmark
detector is developed to test attacks afterwards. It carries

Table 11
ACRONYMS & NOTATION

Acronyms
Support Vector Machine
K-Nearest-Neighbor
Random Forest
Multi-Layer Perceptron
Common Weakness Enumeration
Notation
Label Flippign attack
Function Renaming attack
Deadcode Insertion attack
Detrimental Success Rate
No Effect Rate

SVM
KNN
RF

MLP
CWE

LF,
FR,
DI,
DSR
NER

NLOC
CCN
SilS

Number of lines of code
Cyclomatic Complexity
Silhouette Score

%PSpl %PSNnp Detected poisoned samples in
poisoned/no-poison training files
Vulnerable samples of a CWE i
False negative/ positives

Accuracy

Difference between FN/FP and acc

between the baseline and attacks

%VSow;
FN/FP
acc

Diff (pN|FPlace}

out a binary classification to distinguish if a sample contains
a particular CWE or not using code and token features.
Firstly, datasets, composed of vulnerable and non-vulnerable
samples of several programming languages and CWE, are
preprocessed, e.g. removing comments from codes and blank
lines. Then, data is divided in training and testing for each
considered CWEs. The benchmark detector is enforced in last
place. It is composed of a pair of modules, one to compute
code and token features per sample, and another Al processing
module involving five different Al algorithms used to detect



or discard vulnerable samples.

On the other hand, various poisoning attacks can be carried
out by altering specific training samples. While the detection
process remains similar to the one previously described, the
results may vary—potentially enhancing or degrading the
effectiveness of vulnerability detection.

B. Threat model

Detecting vulnerabilities involves the use of a vulnerability
dataset which we assume it is trustworthy, meaning that data
is considered ground truth. However, detection performance is
closely tied to the quality of the dataset. If the data is poisoned,
results may be compromised. For example, analysts relying on
Al-based systems for vulnerability triage may miss real threats
or waste time on false positives, hindering their effectiveness.

In this way, we assume an attacker which knows at most
50% of vulnerable samples of a particular CWE and manipu-
lates a percentage of them trying to minimize such poison per-
centage. The main purpose is achieving misclassifications in
the vulnerability detection system, especially with the intention
of not detecting vulnerabilities. Then, once a defender uses
poisoned data to train a model, the performance of the system
could be affected, namely in terms of security and usability.
Security is directly linked to missing a vulnerability, while
usability refers to raising alerts for non-vulnerable samples.

C. Goals

In light of the threat model, defenders look for addressing

the following goals in a vulnerability detection system:

« Maximizing security: the system should detect as many
vulnerabilities as possible.

« Maximizing usability: the system should reduce as much
as possible the number of times a fake vulnerable sample
generates an alert. It also indirectly impacts security,
as frequent false alerts may lead defenders to pay less
attention to the system, increasing the risk of missing
real vulnerabilities.

« Reduced effect of poison: the impact of poisoning in the
system should be as minimal as possible even considering
different poisoning percentages.

V. BENCHMARK DETECTOR

Based on the overview description, the two modules of the
benchmark detector are introduced, namely the generation of
features (Section V-A) and the execution of Al classifiers (Sec-
tion V-B). Indeed, as later analysed, the detectors’ performance
is in line with state of art works.

A. Simple features generation

Computed features can be divided in two sets, those gen-
erated over the code and those over tokens of the code. Note
that this proposal deals with assorted programming languages.
Therefore, rather than relying on language-specific features
such as the number of direct subclasses, inheritance depth,
or maximum nesting depth [7], [37], cyclomatic complexity
is used, as it provides a language-independent measure of

code complexity and is well-suited to the context of this work
[37]. Similarly, code tokens are computed to be aligned with
features such as character count or character diversity [6]
and counting words [7], and also in line with their use for
vulnerability detection [32].

1) Code features: For each code sample the following
simple code features are computed in line with [29], [6]:

o Entropy (H(x)): shannon’s entropy calculation, that is,
the addition of the frequency of each symbol by the loga-
rithm of the frequency, H(z) = — Y .| p(z;) log, p(z;).

o Number of functions (# F'unc): total number of functions
in the code.

e Number of ‘for’ / ‘if’ / ‘while’ (#for /I #if /
#while): total number of conditional sentences ‘for’ in
the code.

o Number of lines of code (N LOC): total number of lines
of code in the sample, excluding comments.

o Cyclomatic complexity (CC'N): measure of the number
of linearly independent paths in the code. It is a quanti-
tative measure to analyse the complexity of the code.’

2) Code token features: Tokens have been generated per
code sample, where tokens mean words, symbols, numbers and
special characters. The collection of tokens has been computed
based on [32], but the proposed features are created herein.
The following features are computed:

« Unique tokens (#uT okens): the total number of unique
tokens is computed.

o Total tokens (#tokens): the total number of tokens,
including repetitions, is calculated.

e Encoded tokens (enclokens): each Unicode token is
encoded in its integer representation. To get a single
value, each token’s element is multiplied by their position
and added to the rest. Just unique tokens are encoded
and no repetitions are included. Note that collisions may
happen but with reduced probability.

B. Al processing

This proposal applies four AI algorithms, namely, MLP,
SVM, KNN and RF. They are common Al traditional algo-
rithms and do not require high computing power. Selected
parameters for each algorithm are introduced in the following.

After an initial trial-and-error phase, the following settings
were adopted for each classifier. In KNN, K has been set
to {3, 9, 15}. In RF, the number of trees (ne) is set to {5,
50, 100, 500}. In SVM the Radial Basis Function is used
as a kernel, as it provides, after some tests, better results
than the linear one. In MLP, the activation function is the
hyperbolic tangent activation function for being a good choice
in many applications [38]. On the other hand, the solver used
for weight optimization is *1bfgs’, an optimizer in the family
of quasi-Newton methods which converges faster and performs
better than others for not so large datasets [39]. Indeed, other
solvers have been tested and ’1bfgs’ produces better results.
Additionally, in MLP the number of generated hidden layers

https://www.qt.io/blog/quality-assurance/what-is-cyclomatic-complexity,
last access July 2025.
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Figure 1. Approach overview

(#HL) is set to {1, 2, 3} and the number of neurons (#N)
in each of them has been set to {5, 50, 100, 150}. When there
is more than one hidden layer, the same number of neurons is
set. Hyperparameter tuning is performed via grid search [40],
systematically exploring multiple values to find the best model
configuration.

For each sample, all features are computed. Since classifiers
require a fixed number of features and each sample may
have a different number of tokens, it is necessary to set a
limit to compute enclokens. In this vein, 600 randomly
chosen codes per language are analysed for being considered
a sensible value. After such analysis, the mean of the number
of unique tokens is 73, 37 and 104 for C#, PHP and C/C++
respectively. As a result, considering all features, 82 and
46 and 113 variables are used as input for C#, PHP and
C/C++ respectively. This number of variables is selected
after executing principal component analysis [41] to reduce
the dimensionality, and combinatorial feature selection with
greedy search [42] to explore subsets of features in a stepwise
manner, aiming to find an optimal combination that maximizes
model performance while minimizing complexity. However, in
both cases, the results show that the best choice is to select
all features and such a number of variables.

VI. POISONING TECHNIQUES AND PRELIMINARY
DETECTION

Attacks carried out in the benchmark detector are firstly
introduced (Section VI-A). Then, used datasets are described
(Section VI-B) and the detection of poisoning attacks is finally
studied (Section VI-C).

A. Poisoning attacks description

In this proposal attackers modify the training data to affect
the vulnerability detection system, either security, usability
or both can be affected. By definition, these are considered
targeted attacks. In particular, a label manipulation attack,

namely label flipping, and a pair of data poisoning attacks

are carried out over a percentage of vulnerable samples of a

« Label flipping (LFy): the label of %V Scw g, is changed

to benign (non-vulnerable). In this case, no feature is

affected, just the label. Note that this way promotes the

confusing effect of vulnerable being identified as non-
vulnerable, but there could be other alternatives.

« Function renaming (F'R,): an underscore is introduced

in %V Scwg, before and after every function’s name.
For instance: from ‘getlnput’ to ‘_getlnput_’. Note that
changes apply to all times in which a function appears
in the code. Moreover, the label is changed to ’non-
vulnerable’ to introduce confusion in the classifier. Fea-
tures affected by this attack are H (x) and token features.

o Deadcode insertion (DI,): the same code snippet as

in [24] is randomly inserted in %V Scw g,. This code
is specially crafted to avoid removal [24], that is a
false condition for an if statement is introduced, e.g.
if (Math.sin(0.7)<-1){return false;}. Besides, the label is
also modified to 'non-vulnerable’. Code features affected
are H(x), #if, NLOC, CCN and, depending on the
sample’s code, all token features may also change.

As analysed in Section VI-C, stealthiness is a desirable
property and some issues should be discussed in this regard.
These attacks focus on code analysis prior to their execution,
thus before being compiled, in line with other proposals (recall
Section III). In order to detect these attacks, static analysis
could be applied to identify DI, or even F'R,. In the former,
static analyzers fail to do it properly either detecting many
types of unnecessary code [43] or deleting live code [44]. In
the latter case our selected strategy (i.e., adding underscores)
could be more challenging to detect as it is very common in
programming languages such as C#.%

8https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/
coding-style/identifier-names, last access July 2025
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B. Datasets

Data from a couple of different datasets have been used,
namely the Software Assurance Reference Dataset (SARD)
[45], a collection of test programs with documented weak-
nesses of codes in C, C++, Java, PHP, and C# languages;
and DiverseVul [19], a recent C/C++ vulnerable source code
dataset.

After an initial processing and execution of all proposed Al
algorithms over datasets without poisoned data samples, some
languages and CWEs are discarded due to a couple of reasons.
On the one hand, results from those CWEs with less than 100
vulnerable samples are not considered representative enough.
On the other hand, those CWE data samples whose results in
the benchmark detector lead to an accuracy lower than 70%,
in all applied algorithms (recall Section II-C), seem unsuitable
for vulnerability detection under the proposed approach (see
Section III). Note that accuracy is chosen as the most common
metric to measure the general performance of an Al algorithm.

As a result, the selected CWEs are highly relevant in the
current cybersecurity landscape. In the following, an individual
analysis of the relevance of each CWE is performed. Notably,
31.8% of them—specifically CWE-79, CWE-89, CWE-22,
CWE-78, CWE-94, CWE-287, and CWE-269—are included
in the CWE Top 25, which gathers the most dangerous
weaknesses. Similarly, CWE-401 and CWE-295 appear on
MITRE’s “On the Cusp" list,'® highlighting emerging or
persistent threats. On the other hand, CWE-90, CWE-91, and
CWE-95 are all linked to injection vulnerabilities, commonly
recognized and frequently highlighted in threat rankings like
the OWASP Top 10, alongside CWE-601. In addition, CWE-
310 represents approximately 21% of vulnerabilities reported
in the 2022 Edgescan Vulnerability Statistics Report.!! CWE-
189 is designated by MITRE as a high-severity vulnerability
category, and CWE-120 is commonly flagged as high-risk by
static analysis tools like Flawfinder, particularly in C/C++
codebases. CWE-98 targets a critical vulnerability that has
been actively exploited in numerous web-based attacks.!? In
what comes to CWE-369, although conceptually simple, it can
lead to program crashes and has been associated with real-
world cases such as CVE-2021-22901, affecting systems with
stringent reliability demands. CWE-772 and CWE-770 are
both highly relevant to Denial-of-Service (DoS) scenarios, as
improper handling of resource release or allocation throttling
can result in system exhaustion—an increasingly common
threat in cloud and web application environments.'> CWE-617
can result in abrupt application termination, potentially allow-
ing attackers to crash targeted systems.'* Finally, CWE-835
is known to cause CPU exhaustion and service unavailability,

9https://cwe.mitre.org/top25/archive/2023/2023_stubborn_weaknesses.

html, last access July 2025.
10https://cwe.mitre.org/top25/archive/2024/2024_onthecusp_list.html, last

access July 2025.

Mhttps://www.edgescan.com/wp-content/uploads/2024/03/

2022- Vulnerability-Statistic-Report.pdf, last access July 2025.
Zhttps://cwe.mitre.org/data/definitions/98.html, last access July 2025.
Bhttps://cwe.mitre.org/data/definitions/772.html, https://cwe.mitre.org/data/

definitions/770.html, last access July 2025.
14https://cwe.mitre.org/data/definitions/617.html, last access July 2025.

posing serious risks in real-time and web-based systems. '

In terms of programming languages, C# and PHP language
code samples are chosen from SARD and Table III presents the
amount of vulnerable per CWE and non-vulnerable samples
for SARD and DiverseVul. In total, there are 31,998 samples
in C#, 290,349 in PHP and 54,691 in C/C++.

Table IIT
DATASETS
SARD DiverseVul
# samples # samples
CWE [ Vulnerable | No vulnerable CWE | Vulnerable [ No vulnerable
C# C/C++
22 864 120 5,237
78 618 22 2,613
89 8,040 269 3,257
90 618 287 2,090
91 3,006 18,762 295 3473
Total 31,998 310 3,091
PHP 369 3,194
601 2,208 401 7,259
78 1,872 617 3,759
79 136,537 770 4,466
89 83,017 772 1,728
90 1,728 835 4,180 3,125
91 4,784 94 1,754
95 1,296 56314 189 5,465
98 2,593 Total 54,691
Total 290,349

C. Poisoning detection

A desirable property of poisoning attacks is stealthiness
to make their detection difficult. In this regard, this section
analyses the possibility of detecting proposed attacks by a pair
of the most common algorithms in the field, spectral signatures
and activation clustering. Note that these algorithms can be
used because proposed poisoning attacks, namely F'R, and
DI,, are a type of targeted attacks that include patterns in
samples, and they are comparable to backdoor attacks.

Table IV
SPECTRAL SIGNATURES (S.S) AND ACTIVATION CLUSTERING (AC)
RESULTS
5SS AC

FR, DI, Poison-free FR, DI, Poison-free

%PSp | %PSp | %PSnp SilSpr | SilSpr | SilSnpF

CF 0 0 1497 0.59 0.58 0.59

PHP 0 0 1420 0.50 0.50 047

C7 Gt 13.62 16.88 1476 0.44 0.44 044

a) Spectral signatures: Table IV-left depicts per

dataset/language, the mean percentage of detected poisoned
samples in poisoned training files (% PSp) and the same per-
centage concerning the total amount of samples in no-poison
training files (% P.Syp). Note that mean values are presented
because results per CWE or %p are quite homogeneous.

In the SARD dataset, results indicate that poisoned samples
go undetected, while in DiverseVul, only a small percentage
are identified, that is, 17.75 %PSp on average. Indeed, %PSp
is around 2% higher in F'R, than in DI,. Results over
no poisoned data show that spectral signatures can be quite
confusing if applied over ground truth data because %PSyp
points out that around 14% of samples will be considered
poisoned, while this number should be 0.

Shttps://cwe.mitre.org/data/definitions/835 html, last access July 2025.
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b) Activation clustering: Table IV-right presents per
dataset/language, the mean value of the silhouette score Sil.S
of poisoned training files (SilSpr) and no poisoned ones
(StlSNpr). As in spectral signatures, the mean is presented
due to the similarities in terms of CWE and %p.

Regardless of the dataset and the attack, SilSppr and
SilSypr are close to each other, meaning that AC is not
useful to detect proposed attacks and results are inconclusive.
If we do not consider this issue, S7lS shows that attacks are
better detected in C#, followed by PHP and C/C++. Besides,
the execution of F'R, or DI, is not a relevant factor as SilS
has comparable values in both cases.

Although AC and SS are prominent defenses against back-
door poisoning attacks, they often fail under realistic threat
models. First, AC assumes poisoned samples form distinct
clusters in latent space. However, follow-up evaluations show
modern and semantic backdoor attacks frequently blend into
the clean data distribution, resulting in poor SilS and high
false negatives [46], [47]. Second, SS relies on outlier de-
tection in the dominant singular vectors of feature activations.
Yet, adaptive backdoor attacks that distribute poisoning signals
across multiple spectral components can evade detection [48],
[49]. Third, both methods struggle to generalize to real-world,
complex datasets [47]. These limitations indicate a critical
need for more robust, context-aware backdoor defenses.

VII. POISONING IMPACT ON THE BENCHMARK DETECTOR

The analysis of the impact of poisoning attacks starts
introducing the experimental settings (Section VII-A) and
the metrics (Section VII-B). Subsequently, the detection of
vulnerabilities in the benchmark detector without poisoned
data is carried out (Section VII-C). A characterization of
attacks is described afterwards (Section VII-D). Statistical
tests to corroborate results are later described (Section VII-E).
Finally, a discussion and summary of results are outlined
(Section VII-F).

A. Experimental settings

Using SARD and DiverseVul datasets (recall Section VI-B),
the training data share has been set to 60%, 40% for being a
common practice [50] considering that each file is composed
of 50% of vulnerable code samples of a given CWE and
50% of vulnerable or non-vulnerable code samples of equal or
different CWE. Each experiment has been repeated 3 times,
chosen random training and testing sets, and results present
the mean of all executions. Moreover, undersampling was
used to deal with imbalance classes when required [51]. For
the execution of attacks, poisoning percentages (%p) are set
to 20%, 35% and 50%. The chosen %p values are selected
because they align with those used in state-of-the-art works
(as seen in Table I). Indeed, these percentages have been
considered realistic scenarios in several contexts. For example,
multilingual Wikipedia editions have shown vulnerabilities
to poisoning rates up to 25.3%, demonstrating that even
well-curated sources can be significantly compromised [52].
Additionally, a high compromise can be considered with the
poison rate 50%, for instance, [53] shows how SVMs suffer

a drastic drop in accuracy when nearly half of the training
data is poisoned, while [54] showed similar vulnerabilities
in random forests and neural networks under label flipping
attacks. Lower %p values were discarded following a trial-
and-error process, as they had minimal impact on the system’s
performance. Moreover, it has been established that label O is
used for vulnerable samples and 1 for non-vulnerable ones.
Thus, a binary classifier is computed per CWE.

In particular, the number of poisoned files is determined by
the following expression:

#CWE 4ng X #repetitions(3) X #%p(3) X #attacks(3)
where language (lang) can be PHP, C# and C/ C++ and the
number of CWEs (recall Table III) is 8, 5 and 14 per language
respectively. Then, at the light of all possible parameters for
each algorithm (recall Section V-B), the number of tests is
presented in Table V. The total number of tests is 14,580,
where 729, 2,187, 2,916, 8,748 tests correspond to SVM,
KNN, RF and MLP respectively for all languages. As noted,
the number of tests is larger in those algorithms which apply
more parameters.

Table V
NUMBER OF TESTS
SVM KNN RF MLP
PHP 216 648 864 2,592
C# 135 405 540 1,620
C/ C++ 378 1,134 1.512 4,536
Total 729 2,187 2916 8,748

Finally, in terms of technical settings, Python 3.8.3 is used
for all tests. lizard 1.8.7 is applied to compute CCN, NLOC
and # F'unc and sctokenizer 0.0.8 for generating code tokens.
This latter is chosen among others (e.g. tokenizer) because it
supports all used languages and also provides good results.
However, to get more fine-grained tokens, in line with [32],
tokens composed of several words are removed.

Experimental environment: A Toshiba Portege Z30-E with
Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz and 16GB of
RAM is applied to perform data preprocessing and generate
training and testing data files, while Google Colab Pro with
CPU RAM 1.09 GB/ 51.00 GB and Python 3 executes the
benchmark. In addition, the following main libraries were
used, that is, tensorflow 2.18.0, pandas 2.2.2, sklearn-compat
0.1.3 and numpy 2.0.2. An SQL database is released in
Zenodo,'¢ including code samples, computed code metrics and
tokens to foster further research in the area. Additionally, some
code file with the implementation of part of the algorithms of
the benchmark detector has been released to show the general
working process of these algorithms.

B. Metrics
The analysis of established goals is carried out considering
the following metrics:

e Accuracy (acc): it refers to the number of correct pre-
dictions divided by the total number of predictions and it
is a common measure of the general performance of an

16https://doi.org/10.5281/zenodo.16922431
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Figure 2. Metrics summary

Al system, see Equation 1. All confusion matrix metrics
(false/ true positives and negatives) are involved in its
calculus. Its maximum value is 1.
TP+TN !
~ TP+TN+FP+FN o
« Percentage of false positives (%FP) and negatives (%FN):
as vulnerable samples are labelled with 0 and non-
vulnerable ones with 1 (recall Section VII-A), FN means
a fake alert of a vulnerable sample which is related to
usability issues, while FP means an undetected vulnerable
sample and it is directly related to security. Equation 2 is
applied.

acc

100 x FP/FN

FP/FN =
REP/ (FP+FN +TP +TN)

2

However, for studying poisoning attacks results before and
after attacks take place are analysed. The baseline acc, %FN
and %FP are subtracted to such metrics in each poisoning
attack leading to Diff ., Diff pp and Diff ..., see Equation
3. Then, the following new metrics are introduced:

where « is acc, %FN or %FP
3)

Dzﬁa = Qpgseline — Apoi

o Close to baseline (closeB): when values of %Diff py
and %Diff pp are in between [-5,5], they are considered
close to the baseline and thus, comparable.

o Unsuccessful attack (Uatt): if %Diff pp>0 and
%Diff pn>0 and not within closeB, it means that the
attack has been unsuccessful (Uatt), as %FP and %FN
are lower after the attack.

« Successful attack (Satt): if % Diff 5 p<0 and % Diff p<0
and not within closeB, means the system has been
affected by the attack and then, successful.

o Higher security (HighS): when %Diff <0 and
%Diff pp>0 and not within closeB, means that more
vulnerabilities are identified after the attack and then,
more security with less usability is achieved.

o Higher usability (HighU): when %Diff mn>0 and
%Diff pp<0 and not within closeB better usability is
reached but with more undetected vulnerabilities.

Values of these metrics are computed in percentage in two
different ways: 1) per %p, algorithm and algorithm parameters

(Tables VIII, IX and X) and 2) per %p and CWE (Tables XI
and XII).

Expectations: The sum of all these five metrics is 100,
where close B and Uatt should be maximum in the interest of
defenders and the rest minimum. Moreover, Satt and Diff ..
should increase with %p, which means that %p directly affects
the performance of the system and then, there is a high
probability of successful attacks. The opposite situation is
expected for closeB because higher %p should increase the
difference with baseline results. Moreover, Uatt should be 0
meaning that poisoning attacks affect somehow the system.

Given the five metrics above and the big amount of results,
some aggregated values are devised to better lead to conclu-
sions. On the one hand, the Detrimental Success Rate (DSR)
is a measure of the amount of damage the system suffers after
an attack Equation 4.

DSR = Satt + HighS + HighU 4)

On the other hand, the No Effect Rate (NER), see Equation

5, is a measure of no effects happening in the system after
an attack, thus the higher is the better. The summary of all
metrics is depicted in Figure 2.

NER = Uatt + closeB ®)]

C. Vulnerability detection with the benchmark detector:
poison-free analysis

Before characterizing the resilience of the approach against
poisoning attacks, the benchmark detector is evaluated for each
language and algorithm to analyse their detection capability,
as well as to set baseline results for comparing them in the
presence of poisoning attacks. To do so, the same number of
files and tests as those computed for poisoning attacks are used
and the mean is generated. Though there are many important
metrics to consider, a filter is carried out to only consider
acceptable results in which the mean acc (Mean_acc) or
Mean_acc plus the standard deviation of acc is equal or
higher than 70%, in the latter case to consider also fluctuations.
Results of Mean_acc, %FN, %FP are depicted in Tables VI
and VII, where 1 is the maximum M ean_acc and 100 for
%FN and %FP and the max/min depend on the algorithm
parameters, for instance, KNN has 3 possible K values (i.e.
3,9,15) and the max and min of them is presented. Results
considering a bigger set of metrics are provided in Zenodo' as
detailed in Appendix A.

Concerning SARD, in C# language, results point out a good
system performance as Mean_acc is 0.97-0.99 and %FN and
%FP is between 0.06 and 3.93. SVM, KNN and RF are
the best alternatives, SVM slightly outperforms the rest of
algorithms regardless of the CWEs. PHP presents different
results. Mean_acc is up to 0.8 is most cases excluding several
MLP configurations and KNN is the best algorithm for all
CWE and metrics, where %FN is between 0.08 and 16.9
and %FP between 1 and 5.59. Finally, in DiverseVul, RF is
the best alternative for all CWE and considering all metrics,
being Mean_acc for all CWEs between 0.7 and 0.8 in some



configurations, and %FN and %FP between 7.21 and 20.41.
Moreover, SVM results are some of them comparable with
RF. In sum, C# presents the best results, followed by PHP
and C/C++.

D. Poisoning attacks analysis

An analysis per language is presented in the following
sections from two different points of view, one considering
all algorithms and the corresponding parameters (Tables VIII,
IX and X) and another in terms of CWEs (Tables XI, XII).

In all tables, the highest NER (bold and blue) and DSR
(italics and bold) configurations for the system are highlighted
per %p. When analogous values for DSR and NER are
achieved in different configurations, the minimum Diff ..
is chosen for a no-effect configuration and maximum for a
detrimental one. To simplify the reading of tables, just config-
urations in which NER and DSR are highlighted appear in
the tables, also applying a color scale to both columns, where
green represents the maximum value (100), red the minimum
(0) and yellow the middle one (50). In addition, Diff .. is
presented in Figure 3 for all algorithms and in Figure 4 for all
CWE. Note that the complete version of all Tables VIII, IX
and X is included in Appendix B. For convenience, takeaways
of the analysis are provided.

1) Algorithms and parameter analysis: This section anal-
yses results, depicted in Tables VIII, IX and X, of the
poison attacks concerning used algorithms and parameters. In
addition, Figure 3 shows results of Diff ...

a) C/C++: Concerning the general performance of the
system (Figure 3), Diff,.. shows that baseline results are
better than after attacks, with the exception of KNN %p=20
and DI, where Diff,.=-0.01 for k=15 and Diff,..=0.01
for k=3, which are quite small values. As expected, except
in KNN LF,, Diff,.. increases regardless of algorithms or
attacks.

In terms of NER and DSR (Table VIII), attacks are also
effective in most cases, except for some configurations of KNN
where NER=100 for %p=20 and 35. Indeed, all attacks and
configurations lead to the highest D.SR for %p=50. Moreover,
it is noticed that in LF,, N EFR=0 in many cases, meaning that
once this attack occurs, the system is significantly affected
and particularly when using KNN and RF. Similar situation
happens in F'R,, for KNN. On the contrary, defenders should
choose SVM and KNN against LF, to get a better NER,
KNN or RF against F'R, and KNN against DI,. In sum,
LF, is the most effective attack concerning DSR and NER,
as the former is the highest and the latter the lowest in most
configurations.

However, usability and security are differently affected by
attacks. In 'R, and DI, HighS is higher than HighU,
thus affecting usability but maintaining detection rates. The
opposite occurs in LF,, the effectiveness of the attack puts
the system at risk. In fact, %FP is around 27%'’ on average,
negatively affecting the detection of vulnerabilities.

acc

17Computed from raw data located in our companion Zenodo repository.

b) C#: The system performance is negatively affected
by attacks, as pointed out by Diff .. (Figure 3). However,
Diff ... in DI, for MLP and in LF, for RF is higher than in
other settings, meaning that there is a bigger difference with
baseline results.

closeB presents some unexpected results (Table IX) be-
cause it is 100 for %p=20 and 35 in SVM for all attacks
and in KNN for FF'R, and DI,. Then, these attacks are not
effective.

Based on NER and DSR (Table IX), with %p=50 defend-
ers cannot protect the system regardless of parameters and
algorithms. SVM and KNN in all attack types are the best
alternatives to protect the system, as NER is the maximum
for %p=20 and 35, being KNN especially appropriate against
FR,. On the contrary, RF in FFR,, MLP in DI, and RF in
LF, for %p=50 and MLP in the remaining %p, maximize
DSR. Thus, these algorithms should be discarded by defend-
ers. Indeed, LF,, and DI, are the most effective attacks, being
NER and DSR quite similar en both attacks.

In this language, achieving high usability (HighU) through
attacks comes at the expense of security (HighsS). This
further compromises security, as it reduces the effectiveness of
vulnerability detection. However, doing a deeper analysis, on
average, the amount of %FP'8 is around 17, 10 and 20 in LF,,
FR, and DI, respectively. Thus, despite security is affected
in all of them, it is clear that F'R,, is the least powerful attack.

¢) PHP: In terms of Diff .., it follows expectations
increasing with %p (Figure 3), without being clear whether
one algorithm stands out over another. Similarly, closeB
decreases with %p, though there are some exceptions.

Besides, as in other languages, %p=50 leads to a compro-
mise of the system as DS R is maximum (Table IX). However,
despite algorithms and attacks, MLP is the best choice for
defending the system, while RF is the worst. A different
situation takes place with usability and security. In LF, and
FR, HighU is higher than HighS except for MLP. On
average, without considering this Al algorithm, %FP is around
17-16 in both attacks. A deeper analysis in MLP shows that
%FP is around 24 and 10 in LF,, and F'R,, respectively, while
%FP is between 13 and 14 in both cases on average. Then,
MLP is specially risky against LF},. On the other hand, in DI,
security slightly prevails over usability, reaching, on average,
12 %FP and 18 %FN."

Different to other programming languages, there is no
significant difference of DSR and N E'R and it prevents from
determining the most effective attack (Table IX). Thus, all
attacks affect the system to the same level.

18 Also computed based on data from our Zenodo repository
19Computed using raw data from our Zenodo repository.



Table VI

C/C++ POISON-FREE RESULTS

SVM Mean_acc %FN %FP RF Mean_acc %FN %FP
CWE | min/max min/max | min/max CWE | min max | min max min max
22 0.71 15.61 13.34 22 1 0.63 | 0.72 | 12.88 | 16.36 14.6 | 2041
94 0.71 13.63 15.79 94 1064 | 075 | 1333 | 17.13 | 11.82 | 19.23
120 0.64 20.55 16.16 120 | 0.62 | 0.72 | 15.84 | 18.11 13.26 | 19.97
189 0.61 10.72 27.84 189 | 0.59 0.7 | 12.46 | 1747 | 1699 | 23.46
269 0.7 17.99 12.89 269 | 0.62 | 0.74 147 | 1629 | 11.71 | 21.43
287 0.69 13.41 17.77 287 | 0.63 0.7 1 1504 | 17.01 | 1521 | 20.11
295 0.77 13.63 9.81 295 | 0.68 | 0.78 | 14.67 16.1 8.34 16.7
310 0.74 10.14 15.92 310 0.7 1 0.79 948 | 1343 | 11.14 | 16.27
369 0.72 13.47 14.97 369 | 0.69 | 0.77 | 11.53 | 1374 | 12.28 | 17.45
401 0.69 16.77 15.41 401 | 0.64 | 071 | 1555 | 17.79 | 14.14 | 19.06
617 0.7 13.42 16.71 617 | 0.67 | 0.74 | 1257 | 1476 | 12.74 | 1839
770 0.71 15.78 12.98 770 | 0.66 | 0.77 I1.3 | 16.39 | 12.06 | 18.41
772 0.78 9.51 13.26 772 |1 0.72 0.8 721 | 1239 | 1251 | 1473
835 0.7 13.32 16.61 835 [ 0.63 | 0.72 | 14.01 17.5 13.6 | 20.01
KNN Mean_acc %FN %FP MLP Mean_acc %FN %FP
CWE | min [ max min max min max CWE | min max | min max min max
22 0.64 | 0.67 8.99 10.5 | 23.43 | 24.11 22 1 0.62 ] 0.65 | 1593 | 1741 18.72 20.3
94 0.65 12.28 153 [ 1942 | 22.69 94 1069 | 072 | 15.63 | 17.61 | 1241 | 15.01
120 0.59 0.61 13.82 | 1496 | 2459 | 25.65 120 | 0.55 0.6 | 1598 | 20.92 | 19.89 284
189 0.6 0.61 19.24 | 2259 | 16.65 | 20.98 189 | 0.56 | 0.59 | 11.82 | 15.21 | 27.86 | 29.31
269 0.65 0.67 16.09 | 17.37 | 1628 | 19.77 269 | 0.64 | 0.68 | 14.46 | 16.66 17.1 | 20.38
287 0.58 0.64 497 9.06 | 26.53 | 36.35 287 | 0.64 | 0.65 | 17.99 195 | 1573 | 17.79
295 0.5 0.6 0.68 312 [ 3599 | 46.46 295 1 0.66 | 0.71 | 15.26 175 | 1347 | 1692
310 0.64 0.69 9.06 10.2 [ 20.58 | 26.87 310 | 071 [ 074 [ 11.02 | 1337 | 15.04 | 1622
369 0.59 0.66 7.15 9.17 | 24.94 | 32.56 369 | 0.64 | 0.67 | 1488 | 1643 | 18.05 | 20.78
401 0.56 0.59 2.56 8.35 | 30.95 | 39.81 401 | 0.62 | 0.64 | 22.09 | 28.15 | 11.16 | 14.97
617 0.63 0.66 12.64 | 13.66 | 21.71 | 22.51 617 | 0.67 | 0.68 12.1 | 1328 | 1891 | 20.04
770 0.55 0.57 2.1 8.12 | 33.07 | 41.09 770 | 0.69 | 0.72 | 13772 | 15.63 | 1432 | 16.18
772 0.66 0.69 1.07 354 | 25.61 30.5 772 | 0.66 | 0.75 I1.3 | 15.26 | 1338 | 18.67
835 0.52 0.59 2.96 7.75 | 32.06 429 835 [ 0.61 | 0.64 | 17.89 | 19.54 | 1748 | 19.74
Table VII
C# AND PHP POISON-FREE RESULTS
C# PHP
SVM | Mean_acc | %FN %FP SVM | Mean_acc | %FN %FP
CWE | min/max min/max | min/max CWE | min/max min/max | min/max
22 0.99 0.46 0.37 78 0.82 6.75 10.81
89 0.98 1.63 0.47 79 0.93 4.51 1.8
78 0.98 0.89 0.25 89 0.94 1.14 4.54
91 0.99 0.7 0.28 90 0.88 4.63 6.91
90 0.99 0.44 0.3 91 0.85 10.67 4.05
KNN Mean_acc 9oF. 9%FP 95 0.87 5.07 791
CWE | min [ max min max | min max 98 0.85 9.44 5.08
22 0.99 0.53 | 1.05 02 ] 028 601 0.92 3.19 4.97
89 0.97 0.98 121 | 1.83 | 0.86 1 KNN Mean_acc J%FN 9%FP
78 0.98 0.76 | 1.38 | 0.24 | 0.35 CWE | min [ max min max min max
91 0.98 0.82 1.7 1 039 | 048 78 0.8 ] 0.87 9.09 16.9 2.77 3.94
90 097 ] 0.98 1.03 | 1.64 0.8 | 1.13 79 0.97 1.58 1.97 1 1.16
RF Mean_acc 9oF JFP 89 0.97 0.98 0.08 0.16 2.17 2.68
CWE | min max min max | min max 90 0.89 0.93 4.6 8.12 2.72 3.07
22 0.97 0.99 081 [ 0.88 | 0.47 | 2.39 91 0.84 0.89 578 | 11.29 4.71 5.26
89 0.98 0.99 073 ] 087 | 029 | 1.12 95 0.81 0.89 8.06 | 13.38 3.48 5.59
78 0.98 0.99 059 [ I.12 | 0.06 | 0.62 98 0.82 0.9 734 | 14.89 3.03 322
91 0.98 1 025 ] 096 | 0.06 | 1.09 601 091 0.94 4.19 5.67 2.35 311
90 0.98 0.99 0.7 1.04 | 0.11 0.75 RF Mean_acc %FN %FP
MLP Mean_acc %F %FP CWE | min max min max min max
CWE | min max min max | min max 78 0.85 0.89 3.77 4.62 7.89 10.2
22 0.95 0.98 0.46 [ 0.66 | 1.46 | 3.93 79 0.95 0.98 2.28 3775 0.47 0.72
78 0.95 0.98 0.76 | 1.81 1.24 | 2.88 89 0.96 0.98 0.04 0.26 2.15 3.41
90 0.97 0.99 037 [ 082 | 0.59 | 2.65 90 0.84 0.85 0.4 1.01 1453 | 1478
89 0.92 0.96 1.49 ] 261 | 2.18 6 91 0.85 0.88 1.98 3.03 [ 10.36 | 11.65
91 0.96 0.98 062 [ I.I8 | 1.07 29 95 0.89 0.92 3.67 4.75 4.2 7.1
98 0.88 0.9 34 43 6.39 7.58
601 0.89 0.9 1.35 1.98 9.03 9.43
MLP Mean_acc %FN %FP
CWE | min max min max min max
78 0.71 0.78 3.63 9.69 | 12.56 | 24.89
89 0.76 0.92 1.41 2.62 6.19 22
90 0.59 0.8 0.75 5.7 1 1538 | 39.66
91 0.71 0.75 3.45 8.66 16.3 24.8
98 0.66 0.78 888 [ 14.16 | 11.94 | 20.38
601 0.7 0.79 2.29 573 ] 1596 | 27.68
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Table VIII
C/C++ - BENCHMARK DETECTOR PER POISON ATTACK
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Table IX
C# - BENCHMARK DETECTOR PER POISON ATTACK

0 001 0 0 001 | 0 0 0 001 0 0 001 |0 0 0 001 0 0 001 | 0 0 0s1 0$
0 001 09 0 o 0 0 09 o 0T 0 0T 0 09 0 001 or 0 09 0 0 93
0T 08 o 0 o 0 0T o 09 or 0 0T 0 or 0 001 0T 0 08 0 0 0T
0T 08 0 0 08 0 0T 0 001 0 0 01 |0 0 0 001 0 0 001 | 0 0 001 0 |
0 001 09 0 o 0 0 or 09 or 0 0T 0 or 0 001 or 0 09 0 0 93
0T 08 0T 0 09 0 0T or 09 0T 0 or 0 or 0 001 0 0 001 | 0 0 0T
0 001 0 0 0L | 0 0 0 001 0 0T 08 0 0 0 001 0 0 001 | 0 0 0 0
0 001 08 0 0T 0 0 09 o 0T 0 0T 0 09 0 001 08 0 0z 0 0 93
0 001 0T 0 08 0 0 or 09 0 0 09 0 or 0 001 or 0 09 0 0 0T
0 001 0 0 0L | 0 0 0 001 0 0T 08 0 0 0 001 0 0 001 | 0 0 0sT 0
0 001 or 0 09 0 0 09 114 0T 0 0T 0 09 0 001 0T 0 08 0 0 T 93
0T 08 0T 0 09 0 0T or 09 or 0 0T 0 or 0 001 or 0 09 0 0 0T
0 001 0 0 01 |0 0 0 001 0 0 01 |0 0 0 001 0 0 001 | 0 0 001 0
0 001 or 0 09 0 0 or 09 0T 0 or 0 or 0 001 or 0 09 0 0 93
0T 08 09 0 0T 0 0T or 09 or 0 0T 0 or 0 001 0T 0 08 0 0 0T
0 001 0 0 01 [0 0 0 001 0 0 01 [0 0 0 001 0 0 001 [0 0 S 0s
0 08 or 0 or 0 0 or 09 or 0 0T 0 or 0T 08 0T 0 09 0 0T 93
0 001 or 0 09 0 0 09 o 0T 0 0T 0 09 08 0T 0 0 0T 0 08 0T
0 001 0 0 001 |0 0 0 001 0 0T 08 0 0 0 001 0 0 001 [0 0 0s1 | Los
0 001 0T 0 08 0 0 or 09 or 0 0T 0 or 0 001 0T 0 08 0 0 93
0 001 0T 0 08 0 0 or o 0T 0 0T 0 or 0 001 0 0 001 [ o 0 0T
0 001 0 0 01 [0 0 0 001 0 0 01 [0 0 0 001 0 0 001 [0 0 0 0s
0 001 or 0 09 0 0 09 o or 0 0 0 09 0 08 0T 0 09 0 0 93
0 001 0z 0 08 0 0 or 09 0T 0 or 0 or 0 001 0 0 001 |0 0 0T
YAN | 4Sad | nybH | sybrg | wws | mwn [ goesop |[ AN | ysa | nubig | subig | 1ws | won | gesop || yaAN | ¥sa | nybH | sybH | wws | 1va | gesop | N# [IH# | 4% | Siv
0 001 0 0 0L |0 0 0 001 0 0 001 |0 0 0 001 0 0 001 | 0 0 0os | o T
0T 08 o 0 o 0 0T or 09 09 0 0 0 or 0 001 001 0 0 0 0 93
o 09 o 0 0T 0 or 0T 08 08 0 0 0 0T 09 o or 0 0 0 09 0T
0 001 0 0 0L | 0 0 0 001 0 0 001 | 0 0 0 001 0 0 001 | 0 0 S 0
0 001 08 0 0T 0 0 (174 08 08 0 0 0 0z 0 001 08 0 0T 0 0 93
0 001 09 0 or 0 0 0 001 08 0 0z 0 0 0 001 09 0 or 0 0 0T
YAN | 45 | nubH | sybrg [ wws | mwn [ goesop || AN | usa | aubig | sybrH | mws [ wwn | gesop || yaAN | 4Sad | nubH | subig | wws | g250p2 du | dy | SV
0 001 0 0 0l [0 0 0 001 0 01 [0 0 0 001 0 0 001 [0 0 s1 [ os
001 0 0 0 0 0 001 001 0 0 0 001 0T 08 oy 0 oy 0 0z se | NN
001 0 0 0 0 0 001 001 0 0 0 001 001 0 0 0 0 0 001 0T
0 001 0 0 01 [0 0 0 001 01 [0 0 0 001 0 0 001 [0 0 6 0s
001 0 0 0 0 0 001 001 0 0 0 001 0 001 or 0 09 0 0 93
001 0 0 0 0 0 001 001 0 0 0 001 001 0 0 0 0 0 001 0T
0 001 0 0 01 [0 0 0 001 01 [0 0 0 001 0 0 001 [0 0 € 0s
001 0 0 0 0 0 001 001 0 0 0 001 0 001 or 0 09 0 0 95
001 0 0 0 0 0 001 001 0 0 0 001 0 001 0 0 001 |0 0 0T
YAN | 4sa | nybrH | sybrg | wos | wva | gesop || yAN | 4Sa nos | won | gesop || yAN | ¥Sd | nubig | sybig | wws | mwn | gesop 3| dy | Sy
0 001 0 0 01 [0 0 0 001 08 0 0 0 001 0 0 001 [0 0 0s | WAS
or 09 0 0 09 0 or 001 0 0 0 001 001 0 0 0 0 0 001 93
001 0 0 0 0 0 001 001 0 0 0 0 001 001 0 0 0 0 0 001 0T
YAN | 4sa | nybg | sybrg | wos | #vn | gesop || AN | 4SA sybrg | mws [ wwn | goesop [ yan | ¥ysa | nyba | sybe | wivs | 1wn | gosop dy, | Siv
’Id "4 AT




14

Table X

PHP - BENCHMARK DETECTOR PER POISON ATTACK
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Figure 3. Diff ;.. per algorithm, language and %p

C/C++:

¢ SVM and KNN the most resilient against LF;
RF against F'R,; and KNN against DI,

e LF, the most dangerous attack

e FR, and DI, higher impact on usability than
security

o« KNN and SVM the best to protect the system
e LF, and DI, the most effective attacks
o All attacks have higher impact on security than
in usability, but specially in LF}, and DI,
PHP:
o« MLP the best for protection and RF the worst
e LF, and FR, higher impact on security than
usability, except for MLP
« No clear which attack affects the most
Common in all languages:

o For %p=50 no way to protect the system

2) CWE-level analysis: Tables XI and XII depict results
per CWE, also considering the proposed metrics and DSR
and NER for each %p, while Figure 4 presents Diff

acc*

a) C/C++: The overall system performance is affected
by attacks, though it is noticed that Diff ,..=0.15 for %p=50
in CWE369 and LF,, which is a small value comparing to the
rest. Moreover, it is remarkable that NER is 0 in almost all
LF, configurations, just CWE401 gets NER=33.33 and 4.76
for %p=35 and 50 respectively. Another issue is that CWE287,
CWE369, CWE401 and CWEG617 are less affected by attacks
than other CWEs when %p=20 and 35 in DI,.

b) C#: According to Diff ...
DI, even for %p=>50, that is Diff ,..=0.17, while in other like
CWE90 in DI, Diff,..=0.63, a big number in comparison.
The system is quite resilient in CWE91, CWE78 and CWE22
against F'R,, for %p=20 and 35 because NER is up to 70 in
all cases.

CWE22 is quite resilient to

ccH  C#

PHP  CC++  C#

c¢) PHP: CWES9 is the most affected CWE in all attacks,
either considering Diff ..., DSR and NER. On the contrary,
CWE9S8 in all attacks and CWE90 and CWE78 in LF,
specially, for %p=20 and 35, are quite resistant. In these cases
NER is close or higher than 30 even for %p=35.

d) Comparing CWEs: There are four CWEs, all of them
linked to input data controls (recall Section II-A), which are si-
multaneously considered in different programming languages.
On the one hand, CWE90, CWE78 and CWES89 are studied
in C# and PHP. In CWE90 and CWE78 similar results are
achieved in both languages. Just in CWE78 %p=20 and LF,
results differ, as NER is 36.67 in C# and 81.25 in PHP.
By contrast, in C# results of CWE89 show that based on
NER, the system is less affected by attacks, though Diff ...
is comparable in both languages. The difference is specially
remarkable in DI,, where NER is 0 in PHP for all %p, while
NER=61.67 and 56.67 for %p=20 and 35 respectively.

On the other hand, CWE22 is analysed in C# and C/C++.
Results of Diff .. are higher in C# in LF, and F'R, than in
C/C++, which means that in C# the overall performance of
the system is more affected by these attacks. Similar results
are achieved in terms of NE R among both languages, being
just noticed that in LF, and %p=35 NER=21.67 in C# and
0 in C/C++, thus the attack is more effective in C/C++ in this
configuration.
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Table XI
PHP AND C# - CWE LEVEL RESULTS
PHP LF, FR, DI,
CWE [ %p | closeB | Uatl | Sati | HighS | HighU | DSR | NER | closeB | Uatl | Satl | HighS | HighU | DSR | NER | closeB | Uatl | Satl | HighS | HighU | DSR | NER
20 81.25 0 14.58 0 4.17 18.75 81.25 66.67 0 6.25 8.33 18.75 3333 66.67 60.42 0 0 375 2.08 39.58 60.42
35 27.08 0 | 70.83 0 2.08 7291 27.08 8.33 0 | 54.17 3542 2.08 91.67 8.33 16.67 0 0 83.33 0 83.33 16.67
78 50 0 0 62.5 375 0 100 0 0 0 | 77.08 22.92 0 100 0 0 0 0 100 0 100 0
20 71.97 0 17.73 0 10.3 28.03 71.97 36.82 0 | 5455 1.82 6.82 63.19 36.82 80 0 | 1636 0 3.64 20 80
35 0 0 | 7818 0 21.82 100 0 50.3 0 1.82 0 47.88 49.7 50.3 20 0 | 23.03 56.97 0 80 20
79 50 0 0 100 0 0 100 0 0 0 | 98.18 0 1.82 100 0 0 0 | 76.36 21.82 1.82 100 0
20 50 20 1.67 6.67 21.67 30.01 70 1.67 0 25 0 63.33 88.33 1.67 0 0 333 0 96.67 100 0
35 0 0 | 11.67 0 88.33 100 0 58.33 0 | 26.67 15 0 41.67 58.33 0 0 6.67 0 83.33 90 0
89 50 0 0 | 98.33 1.67 0 100 0 0 0 [ 96.67 333 0 100 0 0 0 0 100 0 100 0
20 93.33 222 0 0 4.44 444 95.55 46.67 0] 2222 1111 20 58188 46.67 5111 0 20 444 24.44 | 4888 ST
35 3111 0 | 61.67 222 5 68.89 3111 1333 0 80 6.67 0 86.67 13.33 3111 222 40 26.67 0 66.67 3333
90 50 0 0] 9333 6.67 0 100 0 0 0 | 86.67 1333 0 100 0 0 0 40 60 0 100 0
20 72.92 0 8.33 0 18.75 27.08 72.92 56.25 0| 29.17 0 14.58 43.75 56.25 41.67 0 | 41.66 0 16.67 58.33 41.67
35 0 0 [ 70.84 2.08 27.08 100 0 22.92 0 [ 2292 20.83 33.33 77.08 22.92 62.5 0 0 375 0 375 62.5
91 50 0 0 ] 9583 4.17 0 100 0 0 0 | 8542 14.58 0 100 0 0 0 25 75 0 100 0
20 36.36 0 | 38.64 0 25 63.64 36.36 49.24 0 | 4224 0 8.52 50.76 49.24 63.64 0 25 11.36 0 36.36 63.64
35 227 0] 7273 0 25 97.73 227 13.64 0| 7727 9.09 0 86.36 13.64 4.54 0 | 1458 80.87 0 95.45 4.54
95 50 0 0 100 0 0 100 0 0 0 | 79.55 20.45 0 100 0 0 0 | 1458 85.42 0 100 0
20 55.56 0 [ 41.66 278 0 44.44 55.56 66.67 0 25 5.55 2.78 3333 66.67 77.78 0 0 0 2222 2222 77.78
35 3333 0| 5278 0 13.89 66.67 33.33 36.11 0 | 3125 0 32.64 63.89 36.11 47.22 0 0 52.78 0 52.78 47.22
98 50 0 0 | 94.44 5.55 0 99.99 0 0 0 [ 97.22 278 0 100 0 0 0 | 38.89 61.11 0 100 0
20 85 0 8.33 5 1.67 15 85 48.33 1.67 20 5 25 50 50 50 0 0 0 50 50 50
35 333 0 40 0 56.67 96.67 3.33 56.67 0 20 3.33 20 43.33 56.67 28.33 0 20 51.67 0 71.67 28.33
601 50 0 0 | 96.67 333 0 100 0 0 0 | 96.67 3.33 0 100 0 0 0 20 80 0 100 0
C# LF, FR, DI,
CWE [ %p | closeB | Uatt | Satt HighS | HighU ‘ DSR | NER | closeB | Uatt | Satt HighS | HighU | DSR | NER | closeB | Uatt | Satt HighS | HighU | DSR | NER
20 3833 0 35 0 26.67 61.67 38.33 0 5 0 20 25 75 66.67 0 | 1833 0 15 3333 66.67
35 21.67 0 0 0 78.33 78.33 21.67 93.33 0 3.33 0 333 6.66 93.33 40 0 | 21.67 0 38.33 60 40
22 50 0 0 100 0 0 100 0 0 0 100 0 0 100 0 1.67 0 | 9833 0 0 98.33 1.67
20 36.67 0] 2333 0 40 63.33 36.67 80 0 0 0 20 20 80 45 0 | 2333 0 31.67 55 45
35 20 0 | 51.67 0 28.33 80 20 75 0 20 0 5 25 75 20 0 55 0 25 80 20
78 50 0 0 100 0 0 100 0 0 0 3.33 6.67 0 100 0 0 0 100 0 0 100 0
20 7333 0 | 26.67 ) 0 26.67 73.33 60 0 333 0 36.67 40 60 61.67 0 | 3833 0 0 38.33 61.67
35 25 0 | 26.67 0 48.33 75 25 40 0] 3333 0 26.67 60 40 56.67 0 | 4333 0 0 | 43.33 56.67
89 50 0 0 100 0 0 100 0 0 0 | 7833 21.67 0 100 0 0 0 100 0 0 100 0
20 7333 0 [ 26.67 0 0 26.67 73.33 40 0 11.67 0 48.33 60 40 40 0 [ 3333 0 26.67 60 40
35 28.33 0 18.33 0 53.33 71.66 28.33 60 0 3.33 0 36.67 40 60 40 0 8.33 0 51.67 60 40
90 50 0 0 100 0 0 100 0 0 0 100 0 0 100 0 0 0 100 0 0 100 0
20 73.33 0 | 16.67 0 10 26.67 73.33 75 0 15 0 10 25 75 60 0 | 1833 0 21.67 40 60
35 20 0 | 61.67 0 18.33 80 20 78.33 0 1.67 0 20 21.67 78.33 20 0 | 4333 0 36.67 80 20
91 50 0 0 100 0 0 100 0 0 0 100 0 0 100 0 0 0 100 0 0 100 0
- E. Statistical significance analysis

C/C++
o CWE369 no highly affected in LF,
o Poisoning attacks affect CWE287, CWE3609,
CWE401 and CWE617 less than other CWEs
C#
o CWE22 quite resilient against DI, even for
%p=50
« CWE91, CWE78 and CWE22 quite resilient
against F'R, with %p=20 and 35
PHP
« CWERS9 the most affected regardless of the attack
o CWEO98 quite resistant to attacks, also CWE90
and CWE78 in LF, for %p=20 and 35
Common to in C# and PHP:
« CWE90 and CWET78 (input data controls) similar
results

PERMANOVA statistical test [55] is performed to ensure
the statistical significance of the differences between models.
This is a non-parametric test used to compare the differences
between groups based on distance matrices. It assesses whether
the centroids (multivariate means) of different groups are
significantly different in a high-dimensional space. The result
is p-value, where 0.05 is the most common threshold to reject
or accept the null hypothesis (Hy) which states that differences
between groups are random. If p-value<0.05 means that
independent variables have a meaningful effect on the dataset,
while if p-value>0.05 means that differences might be due to
random variation.

This test was selected over other alternatives because it is
suitable for multiple dependent and independent variables and
does not require normality for any of the variables. Indeed,
dependent variables do not follow a normal distribution.

In particular, %p and algorithms are considered independent



Table XII
C/C++ - CWE LEVEL RESULTS
LF, FR, DI,
CWE | %p | closeB | Uatt | Satt HighS | HighU \ DSR | NER | closeB | Uatt | Satt HighS | HighU | DSR | NER | closeB | Uatt | Satt HighS | HighU | DSR | NER
20 0 ] 3333 0 0 66.67  66.67 BEES) 100 0 0 0 0 0 100 66.67 0 0 0 3333 | 3333 66.67
35 0 0 [ 66.67 0 33.33 100 0 3333 0 [ 3333 3333 0 | 66.66 33.33 3333 0 0 66.67 0 | 66.67 33.33
22 50 0 0 | 66.67 0 3333 100 0 0 0 | 66.67 3333 0 100 0 0 0 | 3333 66.67 0 100 0
20 0 0 0 0 100 100 0 38.89 0 | 5833 0 2.78 | 6111 38.89 55.56 0 25 19.44 0 | 4444 55.56
35 0 0 0 0 100 100 0 25 0 75 0 0 75 25 0 0 0 100 0 100 0
94 50 0 0 100 0 0 100 0 0 07778 2222 0 100 0 0 0 [3333 66.67 0 100 0
20 0 0 0 0 100 100 0 100 0 0 0 0 0 100 3333 0 0 66.67 0 | 66.67 33.33
35 0 0 0 0 100 100 0 66.67 0 0 0 3333 33.33 66.67 0 0 0 100 0 100 0
120 50 0 0 100 0 0 100 0 0 0 [ 66.67 3333 0 100 0 0 0 0 100 0 100 0
20 0 0 0 0 100 100 0 100 0 0 0 0 0 100 100 0 0 0 0 0 100
35 0 0 100 0 0 100 0 0 0 0 100 0 100 0 0 0 0 100 0 100 0
189 50 0 0 100 0 0 100 0 0 0 0 100 0 100 0 0 0 0 100 0 100 0
20 0 0 0 0 100 100 0 66.66 0 0 0 3334 | 3334 66.66 50 0 0 0 50 50 50
35 0 0 0 0 100 100 0 0 0 100 0 0 100 0 0 0 50 50 0 100 0
269 50 0 0 100 0 0 100 0 0 0 | 66.60 33.34 0 100 0 0 0 0 100 0 100 0
20 0 0 0 0 100 100 0 83.34 0 [ 16.66 0 0 16.66 83.34 83.34 0 [ 16.66 0 0 16.66 83.34
35 0 0 [ 16.66 0 83.34 100 0 0 0 100 0 0 100 0 50 0 0 50 0 50 50
287 50 0 0 100 0 0 100 0 0 0 100 0 0 100 0 0 0 50 50 0 100 0
20 0 0 0 0 100 100 0 88.89 0 | 1LIL 0 0 1111 88.89 50 0 | 3333 16.67 0 50 50
35 0 0 0 0 100 100 0 16.67 0 | 3889 0 44.44 83.33 16.67 0 0 | 30.56 25 44.44 100 0
295 50 0 0 100 0 0 100 0 0 0 100 0 0 100 0 0 0 [ 4444 55.56 0 100 0
20 0 0 0 0 100 100 0 30.56 0 | 36.11 33.33 0 69.44 30.56 88.89 0 | 1L11 0 0 1111 88.89
35 55.56 0 [ 4444 0 0 4444 55.56 63.89 0 [ 1944 16.67 0 ] 36.11 63.89 41.67 0 25 3333 0 | 5833 41.67
310 50 0 0 100 0 0 100 0 0 0 100 0 0 100 0 0 0 0 100 0 100 0
20 0 0 0 0 100 100 0 58.33 0 | 41.67 0 0 41.67 58.33 100 0 0 0 0 0 100
35 0 0 0 0 100 100 0 833 0 [ 41.67 0 50 | 91.67 8.33 66.67 0 0 3333 0 | 3333 66.67
369 50 0 0 | 66.67 33.33 0 100 0 0 0 100 0 0 100 0 0 0 0 100 0 100 0
20 0 0 0 0 100 100 0 90.48 0 0 0 9.52 9.52 90.48 66.67 0 0 0 3333 | 3333 66.67
35 33.33 0 [ 3333 0 3333 66.66 33.33 2222 0 [ TLII 0 66.67 | 7778 2222 57.14 0 9.52 3333 0 | 42.85 57.14
401 50 4.76 0 | 76.19 0 19.05 95.24 4.76 0 0 | 5556 T1.11 3333 100 0 0 0 0 100 0 100 0
20 0 0 0 0 100 100 0 55.56 0 0 33.33 1111 44.44 55.56 100 0 0 0 0 0 100
35 3333 0 | 55.56 0 1111 66.67 33.33 66.67 0 0 3333 0 33.33 66.67 55.56 0 1111 3333 0 4444 55.56
617 50 0 0 100 0 0 100 0 0 0 [ 55.56 A 0 100 0 0 0 0 100 0 100 0
20 0 0 0 0 100 100 0 50 0 | 16.67 3333 0 50 50 66.67 0 0 0 3333 3333 66.67
35 0 0 [ 30.56 69.44 100 0 13.89 0 [ 7778 8.33 0 | 86.11 13.89 0 [ 66.67 3333 0 100 0
770 50 0 0 [ 66.67 0 33.33 100 0 0 0 100 0 0 100 0 0 0 [ 3333 66.67 0 100 0
20 0 0 0 0 100 100 0 45.83 0 11.25 22.92 20 54.17 45.83 80.83 0 2.5 16.67 0 19.17 80.83
35 0 0 [ 36.25 0 63.75 100 0 25 0 25 25 25 75 25 525 0 [ 2625 18.75 25 47.5 52.5
772 50 0 0 | 91.67 8.33 0 100 0 0 0 75 25 0 100 0 0 0 30 70 0 100 0
20 0 0 0 0 100 100 0 0 0 0 100 0 100 0 100 0 0 0 0 0 100
35 0 0 0 0 100 100 0 100 0 0 0 0 0 100 0 0 0 100 0 100 0
835 50 0 0 100 0 0 100 0 0 0 100 0 0 100 0 0 0 0 100 0 100 0

variables and Diff ,.. and DSR dependent ones. Note that
NER could be chosen instead of DSR, as it is complemen-
tary. Table XIII shows p-values of all tests. Results show that
in any language or attack p-value>0.05, rejecting Hy and
discarding randomness. Appendix C shows some additional
tests with different numbers of %p as independent variables
to corroborate the results, which remain consistent.

Table XIIT
P-VALUES OF PERMANOVA STATISTICAL TEST.
LF, FR, DI,
C/C++ | 0.0359 | 0.0009 | 0.0009
PHP 0.0009 | 0.0009 | 0.0009
C# 0.0019 | 0.0009 | 0.0009

FE. Analysis of results and goals discussion

In terms of Diff .., in all languages the average for all
settings has a similar value showing some system degradation
after attacks, though a little higher in C# and PHP. However,
to analyse the most effective attack, the amount of times NER
is 0 (Tables VIII and IX) has been computed. In this regard,
PHP is the language which is less affected by attacks, while
C# and C/C++ present comparable results, being LF, the
most effective and F'R, the least one. Results are generally
more homogeneous among C/C++ and C#, which is due to the
nature of the programming languages. Technically speaking,
C++ and C# are derived from C, thus some similarities are
expected. Concerning PHP, as code samples are shorter (e.g.
average NLOC is 10.63 for PHP, while it is 34.87 and 42.01
for C/C++ and C# respectively), F'Ritqcr, and DI, may affect
the system to a lesser extent.

An analysis of over 11 million PHP files on Packagist
showed that 36% contain fewer than 100 NLOC, with a

median file length of only 4 lines,”® which is quite aligned
to our files. Nonetheless, while our findings suggest that PHP
exhibits higher resilience, this may be partially attributed to
the shorter and structurally simpler nature of the considered
PHP code samples. These characteristics may limit the gener-
alizability of our results to more complex or enterprise-grade
PHP systems. We therefore recommend further evaluation on
large-scale PHP applications to assess whether the observed
robustness trends hold in production environments.

When comparing languages with the same studied CWE,
Diff ... is comparable is most cases but N ER presents some
differences, being meaningful that CWES89 in C# is less
affected by attacks than in PHP.

This study, pointed out in Section II-A, considers some
CWEs from the Top 25 most common ones, being linked to
input data (CWE22, CWE78, CWE89, CWE22 and CWEY%4)
and access management (CWE287) controls. Accordingly, in
C#, CWE22 and CWE78 are quite resilient to F'R, in %p=20
and 35 and the same happens for CWES89 in DI, specially.
The situation differs in PHP, where CWES89 can be attacked
by FR, and DI, even with %p=20. However, CWE78 is
quite resistant to LF, for %p=20 and 35. Similarly, in C/C++,
results from CWE22, CWE94 and CWE287 show that even
with the smallest %p, attacks are fully successful (DS R=100)
in LF,, except for CWE22 where N FER=33.33 for %p=35.

Another important point to note is that the developed attacks
are stealthy, involving subtle changes to the original samples
to induce poisoning. This is further supported by the results
from the detection algorithms.

A final clarification must be made regarding ethical issues,
as the results of studies like this are a double-edged sword. On

20https://blog.lepine.pro/en/php-ecosystem-deep-dive-code-quality-landscape/,

last access July 2025.
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the one hand, they could be maliciously used by attackers to
refine and enhance their malicious strategies, fine-tuning their
approaches to bypass detection more effectively. This raises
significant ethical concerns, as it could lead to the development
of even more sophisticated and undetectable attacks, putting
sensitive systems and data at greater risk. Moreover, the
knowledge gained from identifying the more easy-to-attack
CWE could also be used to attack systems more precisely.
On the other hand, the insights gained from this study provide
significant benefits for defenders. They can use this knowledge
to develop more robust detection systems and countermeasures
capable of withstanding sophisticated poisoning attempts.

Table XIV
TABNET AND TABPFN POISON-FREE RESULTS
| TabNet | TabPFN
C#
CWE Mean_acc 9%FN %FP Mean_acc 9%FN %FP
22 031 | 33.36 | 35.61 0.95 3.63 0.85
78 042 | 37.81 | 2049 0.97 2.36 0.19
89 0.94 1.79 3.69 0.97 1.30 1.41
90 039 | 39.90 | 21.74 0.98 1.63 0.06
91 0.54 | 13.77 | 32.53 0.99 0.85 0.08
PHP
78 0.55 | 36.87 7.73 0.97 1.11 1.71
79 0.92 5.36 2.72 0.97 1.82 1.68
89 0.79 3.55 | 17.86 0.98 1.64 0.62
90 0.81 | 11.69 6.97 0.98 0.83 0.67
91 0.50 | 37.22 | 13.03 0.93 2.42 451
95 0.62 | 31.36 7.29 0.97 1.93 1.48
98 0.54 | 38.98 7.31 0.96 2.23 1.39
601 0.67 091 | 32.50 0.96 1.15 3.04
C/C++
22 049 | 19.22 | 31.90 0.74 8.59 | 17.59
94 0.49 | 16.52 | 3451 0.66 | 22.03 | 12.19
120 043 | 21.25 | 35.83 0.67 | 18.84 | 14.03
189 0.53 | 15.04 | 31.76 0.69 | 1576 | 15.27
269 042 | 20.55 | 3731 0.69 | 12.79 | 18.24
287 043 | 17.81 | 39.77 0.61 | 16.67 | 22.09
295 0.49 | 21.41 | 29.81 0.75 | 17.07 7.95
310 0.47 | 19.66 | 3333 0.81 9.73 9.35
369 045 | 1841 | 36.19 0.77 | 15.03 7.83
401 0.53 | 13.95 | 32.77 0.68 | 16.63 | 14.85
617 0.46 | 18.28 | 35.88 0.72 | 1242 | 15.74
770 048 | 1592 | 3592 0.80 | 11.23 8.89
772 0.48 | 18.88 | 3334 0.81 6.19 | 12.88
835 0.49 | 17.97 | 32.90 0.70 | 12.12 | 17.60
Table XV
TABNET AND TABPFN BENCHMARK DETECTOR PER POISON ATTACK AND
%p 35
TabPFN
Diff yec | closeB | Uatt | Satt | HighS | HighU | DSR | NER
LF, 0.12 0 0 50 0 50 100 0
DI, 0.11 0 0 [ 12.50 87.50 0 100 0
C/C++| FRq 0.09 0 0 [ 37.50 50 12.50 100 0
LF, 0.02 80 0 20 0 0 20 80
DI, 0.20 0 0 0 0 100 100 0
C# FR, 0.15 20 0 40 0 60 100 20
LF, 0.25 12.50 0 [ 6250 0 25 | 8750 12.50
DI, 0.20 12.50 0 [ 6250 0 25 | 8750 12.50
PHP FR, 0.22 12.50 0 [ 62.50 0 25 87.50 12.50
TabNet
LF, 0.05 100 0 0 0 0 0 100
DI, 0 100 0 0 0 0 0 100
C# FRq 0 100 0 0 0 0 0 100
LF, 0.09 0 0 | 3333 33.33 33.33 100 0
DI, 0.10 3333 0 0 3333 3333 | 66.67 | 3333
PHP | FR, 0.10 3333 0 0 3333 3333 | 66.67 | 3333

VIII. FUTURE PROSPECTS: THE APPLICABILITY OF NEW
MODELS

Although this paper focuses on traditional AI models, given
the widespread use of deep learning nowadays, this section
presents some preliminary results of the use of a couple

of deep learning models and input features for vulnerability
detection.

Models such as BERT or LLAMA [56][57][58] have already
been used for vulnerability detection. In [59], a highly simplis-
tic comparison is made between traditional AI methods and
LLM:s for software vulnerability detection. Nevertheless, these
approaches use code as input data and classify vulnerabilities
on a binary basis, without considering CWEs. In fact, [60] is
the only work which proposes the use of LLMs for detecting
13 types of vulnerabilities.

By contrast, this proposal applies code and token features,
being unsuitable the use of models trained to learn from
text. Thus, tabular models, namely TabNetClassifier?! (called
TabNet) and TabPFN?? are applied herein. TabPFN uses a
transformer-based model, learns from a large amount of prior
tabular data and generalizes to new tabular tasks, being quite
similar to a LLM. TabNetClassifier is a deep learning method
that uses attention mechanisms to select important features
dynamically, can be trained end-to-end like a deep neural
network and competes with traditional Al models.

Concerning experimental settings, after trial and error, de-
fault TabNetClassifier parameters are left, considering the
smallest learning rate (i.e. le-2) due to the size of the dataset
(i.e. small than <10K inputs). Using the library pytorch_tabnet
4.1.0, the remaining experimental settings and environment are
analogous to the ones described in Section VII-A. The same
applies to TabPFN, except for the use of library tabpfn 2.0.8
and GPU 24 GB NVIDIA L4 in Google Colab because higher
computing power is demanded.

The outcomes for poison-free datasets are shown in Table
XIV, where performance is lower in C/C++, likely due to the
smaller training dataset size. Additionally, it is evident that
TabPFN outperforms TabNet in a larger number of CWEs,
with particularly strong performance in C# and PHP for both
models.

To complement the study and provide some initial results,
but without the intention of being exhaustive, we have anal-
ysed proposed attacks under %p 35, presenting computations
just with those CWE in which accuracy is 70% or higher
(recall Section VI-B). Table XV depicts results. Interestingly,
C# in TabNet is not affected by any of the attacks. On the
contrary, the affection is significant in the rest of settings,
being remarkable in PHP for TabPFN, where Satt is 62.5%
in all cases.

In general, results of these models against traditional ones
do not differ significantly (compared with Tables VI and VII),
i.e. in C/C++ worse outcomes are reached. Nonetheless, this
is just a preliminary analysis and much more work is devised
as future work. In fact, the field of software vulnerability
detection through deep learning models has many challenges
to deal with [61], such as the size of the datasets required for
training and the demanding time and computing requirements.

IX. CONCLUSION
In light of the number of existing vulnerabilities and the
need of their detection, lots of works have been developed

2l https://pypi.org/project/pytorch-tabnet/, last access July 2025.
22https://github.com/PriorLabs/TabPFN, last access July 2025.
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in the area. Most of them use machine learning algorithms
and despite problems linked to their use, this proposal is the
first one to characterize the resilience of poisoning attacks
in traditional Al algorithms, also considering simple code
features in the detection process. Different CWE of PHP,
C# and C/C++ programming languages are considered in
this study. Results show that poisoning attacks are stealthy
and affect the system but to a different extent depending on
algorithms and languages, as long as the poisoning remains
under 50%. In general, it is noticed that KNN and SVM are
more appropriate for system protection in C# and C/C++,
while MLP in PHP.

This study could be extended to other cybersecurity areas
which use Al algorithms, for instance, network flow analysis
in software-defined networking. In the same way, an ensemble
learning approach could be enforced to get a combined output
for different CWEs instead of a binary classification. Besides,
the use of generative adversarial networks is an attack type to
be also developed as a future step. These algorithms have not
been considered in current works for vulnerability manage-
ment and it is a challenge considering the amount of existing
programming languages. In the same vein, our preliminary
analysis has shown the need to study poisoning attacks using
deep learning models with input features. Finally, once high-
lighted the problem of poisoning attacks in the vulnerability
detection field, countermeasures should be devised, apart from
those used in literature (i.e. spectral signatures and activation
clustering), either to reduce the impact of attacks or to help in
the identification of malicious samples. For example, some
defences or mitigation strategies against poisoning attacks
could be the use of L2 regularization [62] in SVM and MLP to
prevent overfitting to poisoned samples; bootstrap aggregation
[63] in RF to improve generalization; the use of autoencoders
to reconstruct clean inputs and flag deviations in MLP, SVM
or RF; or the use of weighted distance voting to assign higher
weights to trusted samples and lower weights to new or rare
ones in KNN [64].
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A. APPENDIX

Although the metrics used in the analysis are deemed the
most suitable for this study, the following metrics will also be
made available in our companion Zenodo repository:>*

o Accuracy (acc): is a measure of the correct predictions

of the model and it is the most common metric.

o Precision (pre): provides the number of positive predic-
tions well made. It is specially relevant in this proposal
because a higher value minimizes FP.

o Recall (rec): provides the number of positives well pre-
dicted by the model.

e F1 measure (F'1): refers to the harmonic mean of pre-
cision and recall, looking for the maximization of both
vales in the best case.

o Confusion matrix: in involves the amount of false posi-
tives (FP), negatives (FN), true positives (TP) and nega-
tives (TN). In this case, as bad samples are labelled with
0 and good ones with 1 (recall Section VII-A), FP are
the most relevant because it means that a vulnerability is
missed, while FN affect usability.

o Matthews Correlation Coefficient (M CC'): is a measure
of the quality of binary classification and produces a high
score (+1 to —1) only if the prediction obtained good
results in all of the four confusion matrix categories.

B. APPENDIX

Tables XVI, XVII and XVIII depicts the complete version
of results, namely, Diff,... closeB, Uatt, Satt, HighsS,
HighU, DSR and NER for each algorithm, parameter and
language.

C. APPENDIX

PERMANOVA is computed taking pairs of %p and algo-
rithms as independent variables and Diff ... and DSR as
dependent ones. This analysis contributes to ensure the ro-
bustness of results. Table XIX presents results which show that
randomness is discarded in all cases except for %p={20,50}
and LF, in C/C++. However, this result does not follow the
general trend. Although the p-value is 0.11, which is slightly
above the conventional threshold of 0.05, it still suggests that
the observed differences may plausibly be due to random
variation [65].
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PERMANOVA ADDITIONAL TESTS
%p=20,35] %p=[20,50] %p=[35,50]
LF, FR, DI, LF, FR, DI, LF, FR, DI,
C/C++ 00469  0.0029 0.0009 | 0.1168 0.0009 0.0009 | 0.001998  0.0009  0.0009
PHP 00009 00029 00009 | 0.0009 0.0009 0.0009 0.0449  0.0009  0.0009
C# 0.0129  0.0009 0.0009 | 0.0089  0.0009  0.0009 00139 0.0009  0.0009
[5] H. Mozaffari, V. Shejwalkar, and A. Houmansadr, “Every vote counts:

[6]

[7]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

Ranking-based training of federated learning to resist poisoning attacks,”
in 32nd USENIX Security Symposium (USENIX Security 23), 2023.

B. Chernis and R. Verma, “Machine learning methods for software
vulnerability detection,” in Proceedings of the fourth ACM international
workshop on security and privacy analytics, 2018, pp. 31-39.

F. Lomio, E. Tannone, A. De Lucia, F. Palomba, and V. Lenarduzzi,
“Just-in-time software vulnerability detection: Are we there yet?” Jour-
nal of Systems and Software, vol. 188, p. 111283, 2022.

M. Fu, C. Tantithamthavorn, T. Le, Y. Kume, V. Nguyen, D. Phung,
and J. Grundy, “Aibughunter: A practical tool for predicting, classifying
and repairing software vulnerabilities,” Empirical Software Engineering,
vol. 29, no. 1, p. 4, 2024.

Y. Mirsky, G. Macon, M. Brown, C. Yagemann, M. Pruett, E. Downing,
S. Mertoguno, and W. Lee, “Vulchecker: Graph-based vulnerability
localization in source code,” in 3Ist USENIX Security Symposium,
Security 2022, 2023.

R. Schuster, C. Song, E. Tromer, and V. Shmatikov, “You autocom-
plete me: Poisoning vulnerabilities in neural code completion,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021, pp. 1559—
1575.

W. Sun, Y. Chen, G. Tao, C. Fang, X. Zhang, Q. Zhang, and B. Luo,
“Backdooring neural code search,” Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (ACL 2023),
2023.

H. Aghakhani, W. Dai, A. Manoel, X. Fernandes, A. Kharkar,
C. Kruegel, G. Vigna, D. Evans, B. Zorn, and R. Sim, “Trojanpuzzle:
Covertly poisoning code-suggestion models,” in 2024 IEEE Symposium
on Security and Privacy (SP). 1EEE, 2024, pp. 1122-1140.

J. Li, Z. Li, H. Zhang, G. Li, Z. Jin, X. Hu, and X. Xia, “Poison attack
and poison detection on deep source code processing models,” ACM
Transactions on Software Engineering and Methodology, vol. 33, no. 3,
pp. 1-31, 2024.

H. Xu, “Thesis: Environment poisoning in reinforcement learning:
attacks and resilience,” 2023.

Z. Tian, L. Cui, J. Liang, and S. Yu, “A comprehensive survey on
poisoning attacks and countermeasures in machine learning,” ACM
Computing Surveys, vol. 55, no. 8, pp. 1-35, 2022.

B. Tran, J. Li, and A. Madry, “Spectral signatures in backdoor attacks,”
Advances in neural information processing systems, vol. 31, 2018.

B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Edwards, T. Lee,
I. Molloy, and B. Srivastava, “Detecting backdoor attacks on deep neural
networks by activation clustering,” arXiv preprint arXiv:1811.03728,
2018.

G. Severi, J. Meyer, S. Coull, and A. Oprea, “{Explanation-Guided}
backdoor poisoning attacks against malware classifiers,” in 30th USENIX
security symposium (USENIX security 21), 2021, pp. 1487-1504.

Y. Chen, Z. Ding, L. Alowain, X. Chen, and D. Wagner,
“Diversevul: A new vulnerable source code dataset for deep
learning based vulnerability detection,” 2023. [Online]. Available:
https://github.com/wagner- group/diversevul

Z. Yang, B. Xu, J. M. Zhang, H. Kang, J. Shi, J. He, and D. Lo,
“Stealthy backdoor attack for code models,” IEEE Transactions on
Software Engineering, no. 01, pp. 1-21, 5555.

J. Henkel, G. Ramakrishnan, Z. Wang, A. Albarghouthi, S. Jha, and
T. Reps, “Semantic robustness of models of source code,” in 2022
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). 1EEE, 2022, pp. 526-537.

Y. Wan, S. Zhang, H. Zhang, Y. Sui, G. Xu, D. Yao, H. Jin, and L. Sun,
“You see what i want you to see: poisoning vulnerabilities in neural
code search,” in Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2022, pp. 1233-1245.

S. Qi, Y. Yang, S. Gao, C. Gao, and Z. Xu, “Badcs: A backdoor attack
framework for code search,” arXiv preprint arXiv:2305.05503, 2023.
Y. Li, S. Liu, K. Chen, X. Xie, T. Zhang, and Y. Liu, “Multi-target

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

(34]

[35]

[36]

(37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

23

backdoor attacks for code pre-trained models,” Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics, 2023.
G. Ramakrishnan and A. Albarghouthi, “Backdoors in neural models
of source code,” in 2022 26th International Conference on Pattern
Recognition (ICPR). 1EEE, 2022, pp. 2892-2899.

Z. Sun, X. Du, F. Song, M. Ni, and L. Li, “Coprotector: Protect open-
source code against unauthorized training usage with data poisoning,”
in Proceedings of the ACM Web Conference 2022, 2022, pp. 652—660.
H. Zhang, S. Lu, Z. Li, Z. Jin, L. Ma, Y. Liu, and G. Li, “Codebert-
attack: Adversarial attack against source code deep learning models via
pre-trained model,” Journal of Software: Evolution and Process, vol. 36,
no. 3, p. €2571, 2024.

D. Cotroneo, C. Improta, P. Liguori, and R. Natella, “Vulnerabilities in
ai code generators: Exploring targeted data poisoning attacks,” in Pro-
ceedings of the 32nd IEEE/ACM International Conference on Program
Comprehension, 2024, pp. 280-292.

M. Zagane, M. K. Abdi, and M. Alenezi, “Deep learning for software
vulnerabilities detection using code metrics,” IEEE Access, vol. 8, pp.
74562-74 570, 2020.

Y. Wu, D. Zou, S. Dou, W. Yang, D. Xu, and H. Jin, “Vulcnn: An
image-inspired scalable vulnerability detection system,” in Proceedings
of the 44th International Conference on Software Engineering, 2022,
pp. 2365-2376.

W. Tang, M. Tang, M. Ban, Z. Zhao, and M. Feng, “Csgvd: A deep
learning approach combining sequence and graph embedding for source
code vulnerability detection,” Journal of Systems and Software, vol. 199,
p. 111623, 2023.

H. Hanif and S. Maffeis, “Vulberta: Simplified source code pre-training
for vulnerability detection,” in 2022 International joint conference on
neural networks (IJCNN). 1EEE, 2022, pp. 1-8.

L. Wartschinski, Y. Noller, T. Vogel, T. Kehrer, and L. Grunske, “Vu-
denc: vulnerability detection with deep learning on a natural codebase
for python,” Information and Software Technology, vol. 144, p. 106809,
2022.

A. Fidalgo, I. Medeiros, P. Antunes, and N. Neves, “Towards a deep
learning model for vulnerability detection on web application variants,”
in 2020 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW). 1EEE, 2020, pp. 465-476.

Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability detec-
tion,” Network and Distributed System Security (NDSS) Symposium,
2018.

Y. Li, S. Wang, and T. N. Nguyen, “Vulnerability detection with fine-
grained interpretations,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021, pp. 292-303.

Y. Shin and L. Williams, “An empirical model to predict security
vulnerabilities using code complexity metrics,” in Proceedings of the
Second ACM-IEEE international symposium on Empirical software
engineering and measurement, 2008, pp. 315-317.

B. Karlik and A. V. Olgac, “Performance analysis of various activation
functions in generalized mlp architectures of neural networks,” Inter-
national Journal of Artificial Intelligence and Expert Systems, vol. 1,
no. 4, pp. 111-122, 2011.

A. Gupta, R. Parmar, P. Suri, and R. Kumar, “Determining accuracy rate
of artificial intelligence models using python and r-studio,” in 2021 3rd
International Conference on Advances in Computing, Communication
Control and Networking (ICAC3N). 1EEE, 2021, pp. 889-894.

H. Alibrahim and S. A. Ludwig, “Hyperparameter optimization: Com-
paring genetic algorithm against grid search and bayesian optimization,”
in 2021 IEEE congress on evolutionary computation (CEC). IEEE,
2021, pp. 1551-1559.

A. Tharwat, “Principal component analysis-a tutorial,” International
Journal of Applied Pattern Recognition, vol. 3, no. 3, pp. 197-240,
2016.

M. Charikar, V. Guruswami, R. Kumar, S. Rajagopalan, and A. Sahai,
“Combinatorial feature selection problems,” in Proceedings 41st Annual
Symposium on Foundations of Computer Science. 1EEE, 2000, pp. 631—
640.

F. Pecorelli, S. Lujan, V. Lenarduzzi, F. Palomba, and A. De Lucia,
“On the adequacy of static analysis warnings with respect to code smell
prediction,” Empirical Software Engineering, vol. 27, no. 3, p. 64, 2022.
S. Romano, G. Toriello, P. Cassieri, R. Francese, and G. Scanniello,
“A folklore confirmation on the removal of dead code,” in Proceedings
of the 28th International Conference on Evaluation and Assessment in
Software Engineering, 2024, pp. 333-338.


https://github.com/wagner-group/diversevul

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

P. E. Black, “Sard: A software assurance reference dataset,” 2017.
[Online]. Available: https://samate.nist.gov/SARD

B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Edwards, T. Lee,
1. Molloy, and B. Srivastava, “Detecting backdoor attacks on deep neural
networks by activation clustering,” in SafeAl Workshop, 2019, 2019.

I. Malavolta and Others, “Javascript dead code identification, elim-
ination, and empirical assessment,” [EEE Transactions on Software
Engineering, 2023.

B. Tran, J. Li, and A. Madry, “Spectral signatures in backdoor attacks,”
in Advances in Neural Information Processing Systems (NeurIPS), 2018.
S. Saha, T. Zhang, and Others, “Check your other door! creating back-
door attacks in the frequency domain,” arXiv preprint arXiv:2109.05507,
2021.

V. R. Joseph, “Optimal ratio for data splitting,” Statistical Analysis and
Data Mining: The ASA Data Science Journal, vol. 15, no. 4, pp. 531—
538, 2022.

N. Virvilis and D. Gritzalis, “The big four-what we did wrong in
advanced persistent threat detection?” in 2013 international conference
on availability, reliability and security. 1EEE, 2013, pp. 248-254.

N. Carlini, M. Jagielski, C. A. Choquette-Choo, D. Paleka, W. Pearce,
H. Anderson, A. Terzis, K. Thomas, and F. Tramer, “Poisoning web-
scale training datasets is practical,” in 2024 IEEE Symposium on Security
and Privacy (SP). 1EEE, 2024, pp. 407-425.

B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support
vector machines,” in Proceedings of the 29th International Coference on
International Conference on Machine Learning (ICML’12). Omnipress,
2012, pp. 1467-1474.

X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,” arXiv preprint
arXiv:1712.05526, 2017.

M. J. Anderson, “Permutational multivariate analysis of variance (per-
manova),” Wiley statsref: statistics reference online, pp. 1-15, 2014.

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

24

J. Haurogné, N. Basheer, and S. Islam, “Vulnerability detection using
bert based llm model with transparency obligation practice towards
trustworthy ai,” Machine Learning with Applications, vol. 18, p. 100598,
2024.

A. A. Mahyari, “Harnessing the power of 1lms in source code vulnerabil-
ity detection,” in MILCOM 2024-2024 IEEE Military Communications
Conference (MILCOM). 1EEE, 2024, pp. 251-256.

R. L. T. Jensen, V. Tawosi, and S. Alamir, “Software vulnerability and
functionality assessment using 1lms,” in 2024 IEEE/ACM International
Workshop on Natural Language-Based Software Engineering (NLBSE).
IEEE, 2024, pp. 25-28.

Y. Shamoo, “Application of large language models (llms) for software
vulnerability detection,” in Titulo del Libro, M. Omar and H. M.
Zangana, Eds. IGI Global, 2024.

M. T. Alam, R. Halder, and A. Maiti, “Detection made easy: Potentials
of large language models for solidity vulnerabilities,” arXiv preprint
arXiv:2409.10574, 2024.

Z. Sheng, Z. Chen, S. Gu, H. Huang, G. Gu, and J. Huang, “Llms in
software security: A survey of vulnerability detection techniques and
insights,” arXiv e-prints, pp. arXiv-2502, 2025.

C. Cortes, M. Mobhri, and A. Rostamizadeh, “L2 regularization for learn-
ing kernels,” Proceedings of the Twenty-Fifth Conference on Uncertainty
in Artificial Intelligence (UAI2009), 2012.

T.-H. Lee, A. Ullah, and R. Wang, “Bootstrap aggregating and random
forest,” Macroeconomic forecasting in the era of big data: Theory and
practice, pp. 389-429, 2020.

J. Gou, T. Xiong, Y. Kuang e? al., “A novel weighted voting for k-nearest
neighbor rule.” J. Comput., vol. 6, no. 5, pp. 833-840, 2011.

M. Anderson, “Permanova+ for primer: guide to software and statistical
methods.” Primer-E Limited., 2008.


https://samate.nist.gov/SARD

	Introduction
	Background
	Common Weakness Enumeration (CWE)
	Poisoning attacks
	Traditional AI classifiers
	Poisoning detection algorithms
	Spectral signatures
	Activation clustering


	Related work
	Vulnerability detection though simple code features
	Poisoning attacks in code
	Comparison of code poisoning with security focus

	Proposal
	Overview
	Threat model
	Goals

	Benchmark detector
	Simple features generation
	Code features
	Code token features

	AI processing

	Poisoning techniques and preliminary detection
	Poisoning attacks description
	Datasets
	Poisoning detection

	Poisoning impact on the benchmark detector
	Experimental settings
	Metrics
	Vulnerability detection with the benchmark detector: poison-free analysis
	Poisoning attacks analysis
	Algorithms and parameter analysis
	CWE-level analysis

	Statistical significance analysis
	Analysis of results and goals discussion

	Future prospects: the applicability of new models
	Conclusion
	References

