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Abstract—Troubleshooting of wireless networks is a challeng-
ing network management task. We have developed, in a previous
work, a new troubleshooting methodology, which we named
Statistical Learning Automated Healing (SLAH). This method-
ology uses statistical learning, in particular logistic regression,
to extract the functional relationships between the noisy Key
Performance Indicators (KPIs) and Radio Resource Management
(RRM) parameters. These relationships are then processed by
an optimization engine so as to calculate the optimized RRM
parameters which improve the KPIs of a degraded cell. The
process is iterative and converges to the optimum RRM pa-
rameter value in few iterations, which makes it suitable for
wireless networks. The present work focuses on the adaptation
of SLAH for troubleshooting the mobility parameter, namely the
handover margin, in 3G Long Term Evolution (LTE) networks.
The simulation results, which we obtain for a practical use
case, show the advantage of this new, automated troubleshooting
methodology.
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I. INTRODUCTION

With the growth of mobile and wireless networks, the
troubleshooting costs of the network are increasing, and the
growing competition between operators calls for efficient uti-
lization of the network resources and personnel. Troubleshoot-
ing may be manual, involving human experts that detect alarms
and monitor the (statistical) performance of the network, or
automated wherein these tasks are carried out by specialized
modules in the Operation and Management Center (OMC).

The three main tasks of troubleshooting are: detecting the
problem, identifying the cause (diagnosis) and solving the
problem [1][2]. This paper deals with the third step of the
troubleshooting process, i.e., problem resolution.

In fact, once the problem has been identified, there can be
various ways which can be used to improve the performance
of the cells that exhibit a degraded performance. The so-called
steered optimization technique is one such method introduced
in [3]. It uses an interference matrix approach to identify
the most coupled eNodeBs (eNBs) with the problematic cell
in a cellular (UMTS) environment. Indeed, the knowledge
of the interaction between any couple of stations in terms
of interference, macrodiversity and load difference allows to,
first, accurately identify sectors with poor performance and,
second, to suggest corrective measures [4]. The method makes

use of local information from an eNB and its neighbors;
the resulting automated healing is thus a local optimization
process.

Based on this interference matrix approach and local op-
timization technique, we have introduced in [5] a new trou-
bleshooting methodology, which we termed Statistical Learn-
ing Automated Healing (SLAH), and which uses, as its name
indicates, statistical learning to derive the functional rela-
tionships between the Radio Resource Management (RRM)
parameters, for instance interference mitigation parameter, and
the Key Performance Indicators (KPIs), such as Block Call
Rate (BCR), file transfer time, etc.

Initially, this relationship between RRM and KPIs is not
very accurate because the KPI measurements are inherently
noisy. Noise can originate from limited measurement accu-
racy, but also from traffic fluctuations, varying propagation
conditions, etc. The effect of the modification of the RRM
parameter on KPIs can be masked partially by unobserved
effects thus introducing uncertainty in the relationship between
KPIs and RRM parameters. This model is processed by a so-
called optimization engine to calculate the optimized value
for the RRM parameter. The KPIs corresponding to this new
optimized value of the RRM parameter are then calculated.
The new and previous values of the RRM parameter, along
with the corresponding KPIs values, are next used in the
refined model extraction. The optimization process is iterative,
and with each step, the accuracy of the model improves. The
process is repeated until the calculated value of the RRM
parameter converges to an optimum. The advantage of this
troubleshooting methodology lies in the fact that it converges
in 5 to 10 iterations.

The present work discusses the adaptation of SLAH for
the troubleshooting of mobility in 3G LTE, in terms of the
handover margin which determines the handover process from
one eNB to an adjacent one. We assume that an eNB with
degraded KPI performance due to a faulty RRM parameter
setting has already been diagnosed. Our aim is to correct this
parameter using local information from the degraded eNB and
its first tier neighbours.

The remainder of this paper is organized as follows. In Sec-
tion II, we describe the proposed troubleshooting scheme block
diagram. In Section III, we present the details of the system



model for mobility in 3G LTE networks. In Section IV, we
explain the adaption of SLAH algorithm to the troubleshooting
of the mobility parameter. In Section V, we show the 3G LTE
simulation scenario and results. In Section VI, we eventually
conclude the paper.

II. TROUBLESHOOTING BLOCK DIAGRAM

As indicated above, we assume that the fault cause has been
diagnosed; our focus is only on the problem resolution phase.

The SLAH block diagram is presented in Figure 1.

Figure 1. SLAH block diagram

As it can be seen, the system model is composed of four
blocks:
• Initialization block: it provides the initial RRM parameter

to the faulty eNB in the Network/Simulator block and to
the Statistical Learning block

• Network / Simulator block: it represents the real network
or the network simulator. It captures (case of real net-
work) or calculates (case of network simulator) a set
of KPIs of an eNB and of its neighbors for each new
RRM parameter introduced by the Initialization or the
Optimization block

• Statistical Learning block: Logistic Regression (LR)
[6][7] is the statistical learning approach which we use
to extract the functional relationships between the KPIs
and the RRM parameter. This is possible as the KPIs
are assumed to be well-behaved functions, i.e., not multi-
modal functions of the RRM parameter.
Specifically, LR fits the data into the functional form of
a logistic function flog(z) = 1

1+e−z . flog(z) describes
the saturation effects at its extremities, as they are often
encountered in KPIs in communication networks.
For ym,i denoting the ith sample value of the mth

dependent variable ym (i.e., the mth KPI) corresponding
to the ith sample value xi of the explanatory variable x
(i.e., the RRM parameter), LR models ym,i as follows:

ym,i = flog(ηm,i) + εi (1)

where ηm,i = βm,0 + βm,1xi is the linear predictor
representing the contribution of the explanatory variable
sample xi, εi is the the residual error, and βs are the

regression coefficients whose values have to be estimated
using maximum likelihood estimation (MLE).
Hence, from Eqn. (1), the functional relationship be-
tween ŷ, i.e., y estimated by LR, and x can be written
as:

ŷm(x) = flog(βm,0 + βm,1x) (2)

• Optimization block: it calculates the optimal RRM value
using the current model. It determines x̂, the value for
an RRM parameter x that maximizes a utility function
of a set of KPIs denoted as the optimization set Ao,
subject to constraints on a second set of KPIs denoted
as the constraint set Ac. Considering that ŷm(x) has
the functional relationship form given in Eqn. (2), the
optimization problem can be formulated as:

x̂ = argmaxxU(x) (3)

where U =
∑

m∈Ao
wmŷm(x) is the utility function and

wm is the weight given to ŷm(x).
The automated healing process is iterative. At each it-

eration, a new RRM parameter value is proposed by the
Initialization block during the initialization iterations and
by the Optimization block during the optimization iterations
to update the RRM setting of the faulty eNB in the Net-
work/Simulator block. The performance of the faulty eNB
and of its neighbors with this new RRM value is assessed
by the Network/Simulator block through a set of KPI values
obtained at the end of the measurement period, typically one
day. And hence, a data point comprising an RRM parameter
value and the corresponding KPIs is obtained. This data point
together with the previously obtained data points are used by
the Statistical Learning block to refine the model which is
then used by the Optimization block to generate the RRM
parameter value of the next iteration. And thus, as the iterations
progress, on average, the model precision improves and is used
by the Optimization block to find a better value for the RRM
parameter.

III. SYSTEM MODEL FOR MOBILITY

We now consider user mobility between neighbouring cells.
The 3G LTE mobility parameter considered in our study is the
Handover Margin (HM). It is the main parameter that governs
the Handover (HO) algorithm between two neighboring eNBs
and refers to the minimum difference in power, between a
neighboring cell and the current one, that is necessary for the
mobile to make a HO.

The LTE standard has adopted hard HO wherein a mobile
terminal will not be simultaneously connected to the current
cell and the new cell [8]. Hard HO is implemented in LTE
using an algorithm similar to the one used in GSM and is
based on the comparison between the received signal strength
from the serving cell and from the neighboring cells. It actually
operates as follows.

While in communication, the mobile terminal periodically
measures the received power from its serving eNB and from



the neighboring eNBs. The mobile terminal, initially con-
nected to eNBi, triggers a HO to eNBj if the following
conditions are satisfied:

1) The Power Budget Quantity (PBQ) is higher than the
HM: a mobile connected to eNBi triggers a HO to an
adjacent eNBj if:

PBQ = Pj − Pi ≥ HMij +Hysteresis (4)

where Pj is the received power from eNBj expressed
in dB and HMij is the outgoing HM of eNBi towards
eNBj . Hysteresis is a constant independent of the eNBs
and of the mobile stations, and is fixed here to 0

2) The power being received from the target cell must be
higher than a given threshold

3) There are sufficient number of resources/chunks in the
target cell. Otherwise, the mobile terminal is bounced
back to the original cell

IV. ADAPTATION OF SLAH TO MOBILITY PARAMETER

We now consider the adaptation of the troubleshooting
algorithm to the mobility parameter of the 3G LTE network
by optimizing the HM parameter of the degraded eNBs. We
assume that the cause of the degraded performance has been
diagnosed and is related to a bad mobility parameter setting
of the mobile terminals attached to the problematic eNB and
its first tier neighboring eNBs.

Let us denote by eNBc (c standing for central ) an eNB
with degraded performance. Let NS1 and NS2 denote the
set of first and second tier neighbouring eNBs of eNBc,
respectively. Hence, eNBj where j ∈ NS1 and eNBt where
t ∈ NS2, denote the first and second tier neighbours of eNBc

respectively.
To troubleshoot eNBc, HMjc, j ∈ NS1, are updated and

optimized. In order to reinforce the effect of optimization of
HMjc on the KPIs, the HMjt and HMcj for the immediate
geographical neighbours are calculated as a function of HMjc,
given as: HMcj = HMmax − HMjc and HMjt = HMjc,
where HMmax is the maximum HM value between any two
eNBs.

We use the notion of coupling between eNB j and c which
is expressed in terms of the interference that eNBj produces
on the mobile terminals connected to eNBc and can be written
in terms of the interference matrix element Icj [3][4]. Hence
the larger Icj , the stronger the coupling between the two eNBs.
In this work, the matrix element Icj is equal to the sum of
the interferences perceived by the mobile terminals attached
to eNBc and generated by the downlink transmissions to the
mobile terminals of eNBj .

The use of SLAH to jointly optimize all the elements of the
vector (HMjc), j ∈ NS1, is not a simple task. Denote by s,
s ∈ NS1, the index of the eNB which is the most coupled
with eNBc, namely s = argmaxj(Icj), s and j ∈ NS1. To
reduce the complexity of the SLAH process and to enhance
its scalability, we propose to adjust the HMjc parameter
according to the degree of coupling between eNBj and eNBc.

Hence, we define a functional relationship between HMsc

and HMjc, HMjc = gj(HMsc), that accounts for the
coupling terms Ics and Icj mentioned above, as follows:

HMjc = gj(HMsc) = HMsc + (1−HMsc)(1−
Icj

Ics
) (5)

By using Eqn. (5), just one parameter, HMsc, needs to be
optimized.

The process is scalable in the sense that the automated
healing can be performed simultaneously on any number of
eNBs provided they are not direct neighbours.

Two KPIs are used in the SLAH process: the Average Bit
Rate (ABR) and the Block Call Rate (BCR) of the mobile
terminals attached to an eNB. SLAH aims at maximizing the
ABR for eNBc and of its direct neighbours while verifying
the constraints on BCRj , j ∈ c ∪NS1.

We define the utility function used for optimization as:

U = ABRc +
∑

j∈NS1

ωjABRj (6)

It is noted that ABRj is a function of HMjc and hence, via
equation (5), of HMsc. ABRj also depends on the interfer-
ence from its neighbouring eNBj . The weighting coefficients
ωj depend on the relative contribution of Icj with respect to
the sum on all eNBs in NS1 and are given by:

ωj =
Icj∑

k∈NS1 Ick
(7)

satisfying the condition
∑

j∈NS1 ωj = 1.
The optimization problem can now be formulated as fol-

lows:

HMsc = argmaxHM ′sc
U(HM ′sc) (8)

subject to BCRj < BCRth ; j ∈ c ∪NS1.
BCRth is the threshold for BCRj . The ABR and BCR

indicators in equations (6) and (8), are given in the form of a
Logistic Regression (LR) function (Eqn. (2)) obtained using
the Statistical learning block defined above.

Denote a data point pj
k as the vector:

pj
k = (HMjc, ABRj , BCRj)k ; j ∈ c ∪NS1 (9)

The set of k data points for an eNBj , j ∈ c ∪ NS1, is
denoted by P j

k . The SLAH algorithm is written below:



Initialization:
1. Identify the most coupled eNB s with eNB c among the
neighbours in NS1
2. For each eNBj , j ∈ c ∪NS1, compute an initial set
of k data points P j

k

Repeat until convergence:
3. For each eNBj , compute the statistical model using
LR for ABR and BCR using the corresponding data
points in P j

k

4. Compute a new vector (HMjc), j ∈ NS1 (using
equations (5) and (8))
5. Apply (HMjc) in the network/simulator and observe
(ABRj) and (BCRj), j ∈ c ∪NS1. Compute new data
point pj

k+1 (equation (9))
6. Update P j

k+1: P j
k+1 = P j

k ∪ p
j
k+1

7. k=k+1
End Repeat

The initial set P j
k of data points in Step 2 is obtained by

applying k (HMjc) vectors to the network/simulator one by
one and obtaining the corresponding KPIs.

V. SIMULATIONS AND RESULTS

A. Simulation Scenario

We consider a 3G LTE network composed of 45 eNBs in a
dense urban environment, as depicted in Figure 2.

Figure 2. The network diagram of the simulated system

We consider downlink transmissions. The simulation param-
eters are as listed in Table I. A MATLAB-based LTE simulator
described in [9] has been used.

The simulator performs Monte Carlo correlated snapshots
of the simulated network in order to account for the time
evolution of the traffic. At the end of each time step of one
second, new mobile terminal positions are updated, HO events
are processed, new users are admitted to the system according
to the conditions of access and others leave the network, either
after the completion of their service or because they were
dropped.

Parameters Settings
System bandwidth 5MHz
Cell layout 45 eNBs, single sector
Maximum eNB transmit power 32 dBm
Inter-site distance 1.5 to 2 KM
Subcarrier spacing 15 kHz
PRBs per eNB 21
Path loss L=128.1 + 37.6 log10(R), R in kilo-

meters
Thermal noise density -173 dBm/Hz
Shadowing standard deviation 6 dB
Traffic model FTP
File size 5700 Kbits
PRBs assigned per mobile 1 to 3 (First-come, first-serve basis)
Mobility of mobiles 90%
Mobile speed 15 m/s
HMmax 12dB

Table I
SYSTEM LEVEL SIMULATION PARAMETERS

The simulations are run for 3300 time steps, with a fixed
HM value, and the KPIs are averaged using the interval
between 500 and 3300 seconds to account for transient effects.
The interference matrix elements used in equations (5) and
(7) are calculated once for the reference solution, described
next, during a longer time interval varying from 500 to 7000
seconds to achieve higher accuracy.

An optimal default value for HM is chosen as 6dB for all
eNBs in the network and serves as the reference (default)
solution. This reference solution is used as a starting point
for the automated healing process. The default HM value is
determined in [10] by varying it uniformly from 0.05 to 12 in
steps of 0.15 for all the eNBs. For each HM value, the network
performance is assessed in terms of the mean Ping Pong Rate
(PPR), mean BCR and mean Drop Call Rate (DCR). If these
three KPIs are aggregated, the global optimum HM value
occurs around HM =6dB. Hence, the value of HM = 6dB
is selected as the reference (default) HM value for eNBs in
the network.

B. Troubleshooting Scenario

We now select, for the sake of illustration, eNBc=13 in the
simulated network of Figure 2 as the problematic eNB. The
eNBj , where j ∈ NS1 = {14, 15, 22, 23, 43, 45}, are the six
first tier geographical neighbours of eNBc=13. The set NS2
of the second tier neighbours of the problematic eNB consists
of eNB1, eNB10, eNB11, eNB16, eNB18, eNB24, eNB37

and eNB44.
Denote by the optimization zone the subnetwork comprising

eNBc=13 and its first tier NS1, and by the evaluation zone
the subnetwork comprising the eNBc=13 and its first two
tiers NS1 and NS2. eNBs=45 is the eNB most coupled with
eNBc=13.

C. Results

The first five values of HMsc,s=45 in Table II are chosen
in the initialization phase of SLAH. The next seven values
(Phase-II in Table II) are calculated iteratively by the SLAH al-
gorithm. The values of HMjc,j=14, HMjc,j=15, HMjc,j=22,



HMjc

j = 14 j = 15 j = 22 j = 23 j = 43 j = s = 45
Ph

as
e

I
11.7 11.5 11.8 11.9 11.6 11.4
10.5 9 10.9 11.6 9.9 8.7
9.2 6.8 9.9 11.3 8.2 6
8 4.4 9 11 6.4 3.3

6.7 2 8 10.7 4.8 0.6

Ph
as

e
II

9.2 6.8 9.8 11.3 8.0 5.7
9 6.4 9.8 11.3 7.9 5.6

8.9 6.2 9.7 11.2 7.8 5.4
8.9 6.2 9.7 11.2 7.7 5.3
9 6.4 9.8 11.2 7.9 5.6

8.9 6.2 9.7 11.2 7.8 5.4
8.9 6.2 9.7 11.2 7.8 5.4

Table II
PHASE-I SHOWS THE INITIALLY CHOSEN HMjc VALUES. PHASE-II
SHOWS THE HMjc VALUES CALCULATED DURING OPTIMIZATION.

HMjc,j=23 and HMj=43 are calculated using equation (5).
In spite of the noisy data, one can see from Phase-II that
HMsc,s=45 converges in a few iterations. HMsc,s=45 = 5.4
is chosen as the optimized solution for the next Figures.

(a)

(b)

Figure 3. Mean KPI values and LR regression curves as a function of HMsc

for eNBj=13, eNBj=22 and eNBj=43 (a) mean BCR (b) mean ABR

Figure 3(a) shows the mean BCR (points as well as ex-
tracted LR curves) for eNBc=13, eNBj=22, eNBj=23 and

eNBj=43 as a function of HMsc,s=45 after convergence.
For the sake of clarity, the mean BCR curves for eNBj=14,
eNBj=15 and eNBj=45 are not shown; they are below the
maximum allowable mean BCR threshold of 5%.

The concentration of mean BCR data points around
HMsc,s=45 = 5.4 indicates the convergence of the SLAH
algorithm.

The mean ABR along with its LR curves for eNBj=13,
eNBj=15, eNBj=43 and eNBs=45, after convergence, are
shown as a function of HMsc,s=45 in Figure 3(b).

The mean ABR curves for eNBj=14, eNBj=22 and
eNBj=23 are, again, not shown for the sake of clarity; they
show a similar trend.

(a)

(b)

Figure 4. KPI of the eNBs in the optimization zone for the reference solution
(white) and optimized (black) network conditions; mean BCR (a) and mean
ABR (b)

Figure 4(a) shows the gain brought about by the SLAH
algorithm for the optimization zone (set NS1 of eNBs). The
mean BCR of the problematic eNBc=13 is reduced below
the threshold of 5% to 4.73% with respect to the mean BCR
value of the reference solution of 9.52%. Similarly, after
optimization, the mean BCR of each eNBs in NS1 is below
the 5% threshold.

As of the mean ABR, the improvement obtained by the
SLAH algorithm in the optimized zone with respect to the



(a)

(b)

Figure 5. KPIs in descending order for the eNBs in the evaluation zone,
mean BCR (a) and mean ABR (b)

reference solution is shown in Figure 4(b). The mean ABR of
eNBc=13 is increased by 2.79% whereas the average mean
ABR of NS1 is increased by 2.51%.

Figures 5(a) and 5(b) show, in a descending order, the
mean BCR and the mean ABR, respectively, for the reference
(square) and the optimized (circle) eNBs in the evaluation
zone. It is noted that the order of the stations in the two curves
of each figure may not be preserved. One can see that, on
average, the mean BCR and the mean ABR in the evaluation
zone are improved. The average improvement of the mean
ABR in the evaluation zone is equal to 3.51%.

VI. CONCLUSION

We presented, in this paper, the adaptation of our SLAH
troubleshooting algorithm to troubleshoot the HM mobility
parameter in 3G LTE networks. Statistical learning is used
to model the functional relationship between KPIs and RRM
parameter. This model information is processed by the statis-
tical learning block in order to calculate the optimum RRM
parameter to improve the performance of the degraded eNB.
A case study of eUTRAN HO algorithm has been considered;
it shows that our model improves after each iteration and that
the RRM parameter converges to the optimal value in a limited
number of iterations.
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